metadata
language:
- en
tags:
- llama
Model Card: OpenChat
OpenChat is a series of open-source language models fine-tuned on 6K diverse and high-quality multi-round conversations.
Generic models:
- OpenChat: based on LLaMA-13B (2048 context length)
- OpenChat-8192: based on LLaMA-13B (extended to 8192 context length)
Code models (coming):
- OpenCoder: based on StarCoder (8192 context length)
- OpenCoderPlus: based on StarCoderPlus (8192 context length)
- OpenCoderBase: based on StarCoderBase (8192 context length)
Conversation Template
The conversation template involves concatenating tokens.
Besides base model vocabulary, an end-of-turn token <|end_of_turn|>
is added, with id eot_token_id
.
# OpenChat
[bos_token_id] + tokenize("Human: ") + tokenize(user_question) + [eot_token_id] + tokenize("Assistant: ")
# OpenCoder
tokenize("User:") + tokenize(user_question) + [eot_token_id] + tokenize("Assistant:")
Hint: In BPE, tokenize(A) + tokenize(B)
not always equals to tokenize(A + B)
Following is the code for generating the conversation templates:
@dataclass
class ModelConfig:
name: str
# Prompt
system: Optional[str]
role_prefix: dict
ai_role: str
eot_token: str
bos_token: Optional[str] = None
# Tokenize
max_tokens: Optional[int] = None
# Get template
def generate_conversation_template(self, tokenize_fn, tokenize_special_fn, message_list):
tokens = []
masks = []
# begin of sentence (bos)
if self.bos_token:
t = tokenize_special_fn(self.bos_token)
tokens.append(t)
masks.append(False)
# System
if self.system:
t = tokenize_fn(self.system) + [tokenize_special_fn(self.eot_token)]
tokens.extend(t)
masks.extend([False] * len(t))
# Messages
for idx, message in enumerate(message_list):
# Prefix
t = tokenize_fn(self.role_prefix[message["from"]])
tokens.extend(t)
masks.extend([False] * len(t))
# Message
if "value" in message:
t = tokenize_fn(message["value"]) + [tokenize_special_fn(self.eot_token)]
tokens.extend(t)
masks.extend([message["from"] == self.ai_role] * len(t))
else:
assert idx == len(message_list) - 1, "Empty message for completion must be on the last."
# Truncate to specified tokens
if self.max_tokens:
tokens = tokens[:self.max_tokens]
masks = masks[:self.max_tokens]
return tokens, masks
MODEL_CONFIG_MAP = {
# OpenChat
"openchat": ModelConfig(
name="OpenChat",
# Prompt
system=None,
role_prefix={
"human": "Human: ",
"gpt": "Assistant: "
},
ai_role="gpt",
eot_token="<|end_of_turn|>",
bos_token="<s>",
# Tokenize
max_tokens=2048
),
# OpenCoder / OpenCoderPlus
"opencoder": ModelConfig(
name="OpenCoder",
# Prompt
system=None,
role_prefix={
"human": "User:",
"gpt": "Assistant:"
},
ai_role="gpt",
eot_token="<|end_of_turn|>",
bos_token=None,
# Tokenize
max_tokens=8192
)
}