metadata
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: attraction-classifier
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7546728971962616
attraction-classifier
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.5790
- Accuracy: 0.7547
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 69
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5533 | 0.62 | 150 | 0.5783 | 0.6916 |
0.5608 | 1.24 | 300 | 0.5504 | 0.7243 |
0.5382 | 1.87 | 450 | 0.5403 | 0.75 |
0.4353 | 2.49 | 600 | 0.5244 | 0.7383 |
0.3963 | 3.11 | 750 | 0.6338 | 0.7220 |
0.3963 | 3.73 | 900 | 0.5162 | 0.7383 |
0.3183 | 4.36 | 1050 | 0.5115 | 0.7710 |
0.3715 | 4.98 | 1200 | 0.5172 | 0.7640 |
0.2492 | 5.6 | 1350 | 0.5787 | 0.7477 |
0.2739 | 6.22 | 1500 | 0.5790 | 0.7547 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.0.1+cu117
- Datasets 2.15.0
- Tokenizers 0.15.0