mbart-hre-viet1.0 / README.md
ntviet's picture
End of training
fedbe20 verified
---
library_name: transformers
language:
- hre
base_model: facebook/mbart-large-50-many-to-many-mmt
tags:
- generated_from_trainer
model-index:
- name: mBART Hre Vietnamese translation 1.0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mBART Hre Vietnamese translation 1.0
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0011
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 336 | 0.1069 |
| 0.5938 | 2.0 | 672 | 0.0613 |
| 0.0798 | 3.0 | 1008 | 0.0315 |
| 0.0798 | 4.0 | 1344 | 0.0154 |
| 0.0267 | 5.0 | 1680 | 0.0098 |
| 0.0123 | 6.0 | 2016 | 0.0057 |
| 0.0123 | 7.0 | 2352 | 0.0062 |
| 0.0061 | 8.0 | 2688 | 0.0052 |
| 0.0043 | 9.0 | 3024 | 0.0033 |
| 0.0043 | 10.0 | 3360 | 0.0031 |
| 0.003 | 11.0 | 3696 | 0.0023 |
| 0.0024 | 12.0 | 4032 | 0.0023 |
| 0.0024 | 13.0 | 4368 | 0.0020 |
| 0.0018 | 14.0 | 4704 | 0.0016 |
| 0.0016 | 15.0 | 5040 | 0.0020 |
| 0.0016 | 16.0 | 5376 | 0.0015 |
| 0.0014 | 17.0 | 5712 | 0.0013 |
| 0.0011 | 18.0 | 6048 | 0.0011 |
| 0.0011 | 19.0 | 6384 | 0.0010 |
| 0.0008 | 20.0 | 6720 | 0.0011 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0