Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: bigcode/starcoder2-3b
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
  - f2d6636a6bf983c9_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/f2d6636a6bf983c9_train_data.json
  type:
    field_instruction: formal_statement
    field_output: formal_proof
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 2
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: nttx/7d056165-bcef-45c4-b8da-bae28c907ef1
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
  0: 75GB
max_steps: 1200
micro_batch_size: 4
mlflow_experiment_name: /tmp/f2d6636a6bf983c9_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
saves_per_epoch: null
sequence_len: 512
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ff38011c-5505-4460-be03-6a4b9792853e
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ff38011c-5505-4460-be03-6a4b9792853e
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null

7d056165-bcef-45c4-b8da-bae28c907ef1

This model is a fine-tuned version of bigcode/starcoder2-3b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4992

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1200

Training results

Training Loss Epoch Step Validation Loss
No log 0.0006 1 2.6602
4.6799 0.0925 150 0.8653
3.3942 0.1850 300 0.6641
3.1225 0.2776 450 0.6027
2.9 0.3701 600 0.5595
2.6541 0.4626 750 0.5197
2.5437 0.5551 900 0.5067
2.4667 0.6476 1050 0.4951
2.6231 0.7402 1200 0.4992

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for nttx/7d056165-bcef-45c4-b8da-bae28c907ef1

Adapter
(349)
this model