See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/gemma-1.1-2b-it
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 9a34ae94e5706c4f_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/9a34ae94e5706c4f_train_data.json
type:
field_instruction: instruction
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 2
eval_batch_size: 8
eval_max_new_tokens: 128
eval_steps: 300
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: nttx/2906295d-e2bf-4923-adfd-93dcf32eeb0a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0004
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 300
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 3000
micro_batch_size: 8
mlflow_experiment_name: /tmp/9a34ae94e5706c4f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 100
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 300
saves_per_epoch: null
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 9d29453f-c2af-4ec4-83a0-272f263b82eb
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 9d29453f-c2af-4ec4-83a0-272f263b82eb
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null
2906295d-e2bf-4923-adfd-93dcf32eeb0a
This model is a fine-tuned version of unsloth/gemma-1.1-2b-it on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.6998
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 3000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0013 | 1 | 3.4993 |
1.9459 | 0.3920 | 300 | 2.0434 |
1.7489 | 0.7839 | 600 | 1.8941 |
1.6123 | 1.1759 | 900 | 1.7152 |
1.5098 | 1.5679 | 1200 | 1.6758 |
1.4944 | 1.9598 | 1500 | 1.6400 |
1.2823 | 2.3518 | 1800 | 1.6630 |
1.2428 | 2.7438 | 2100 | 1.6395 |
1.1651 | 3.1357 | 2400 | 1.7229 |
1.0362 | 3.5277 | 2700 | 1.6998 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for nttx/2906295d-e2bf-4923-adfd-93dcf32eeb0a
Base model
unsloth/gemma-1.1-2b-it