npark95's picture
End of training
f888da6 verified
metadata
library_name: transformers
base_model: yikuan8/Clinical-Longformer
tags:
  - generated_from_trainer
metrics:
  - f1
model-index:
  - name: finetuned_ClinicalLongformer_newData
    results: []

finetuned_ClinicalLongformer_newData

This model is a fine-tuned version of yikuan8/Clinical-Longformer on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5642
  • F1: 0.8806

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1
0.5848 1.0 25 0.5680 0.8333
0.4637 2.0 50 0.5057 0.8333
0.3851 3.0 75 0.5439 0.8633
0.3559 4.0 100 0.5642 0.8806
0.2903 5.0 125 0.5273 0.875
0.3463 6.0 150 0.7850 0.8741
0.3455 7.0 175 0.6507 0.8788
0.1776 8.0 200 0.6855 0.8769
0.1864 9.0 225 0.9215 0.8593
0.1548 10.0 250 0.9744 0.8485
0.0926 11.0 275 1.0779 0.8485
0.0857 12.0 300 1.4990 0.8369
0.0822 13.0 325 1.2385 0.8485
0.0783 14.0 350 1.4154 0.8444
0.0876 15.0 375 1.4720 0.8444
0.0152 16.0 400 1.4362 0.8397
0.0079 17.0 425 1.6063 0.8406
0.027 18.0 450 1.6123 0.8382
0.0403 19.0 475 1.5967 0.8444
0.0046 20.0 500 1.6041 0.8444

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0