LLM-JP-3.3.7B LoRA Model

This is the LLM-JP-3.3.7B model fine-tuned with LoRA for instruction-based Japanese text generation tasks. The model has been fine-tuned on datasets ichikara-instruction and Ego/jpflan-raw.

How to Use

Below is an example of how to use the model for inference:

import torch
from unsloth import FastLanguageModel
from peft import PeftModel

HF_TOKEN = ""  # Add your Hugging Face token here

# Load the base model and tokenizer
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name="llm-jp/llm-jp-3-3.7b",
    dtype=None,
    load_in_4bit=True,
    trust_remote_code=True,
)
model = PeftModel.from_pretrained(model, "nito78/llm-jp-3-3.7b-it_lora_all", token=HF_TOKEN)

# Switch to inference mode
FastLanguageModel.for_inference(model)

# Example usage
import json

# Load dataset
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
        line = line.strip()
        item += line
        if item.endswith("}"):
            datasets.append(json.loads(item))
            item = ""

from tqdm import tqdm

# Perform inference
results = []
for dt in tqdm(datasets):
    input = dt["input"]

    prompt = f"""### 指示\n{input}\n### 回答\n"""

    inputs = tokenizer([prompt], return_tensors="pt").to(model.device)

    outputs = model.generate(**inputs, max_new_tokens=512, use_cache=True, do_sample=False, repetition_penalty=1.2)
    prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split("\n### 回答")[-1]

    results.append({"task_id": dt["task_id"], "input": input, "output": prediction})

import os
import json

# Save results
output_dir = "./results"
os.makedirs(output_dir, exist_ok=True)

output_file = os.path.join(output_dir, "result.jsonl")
with open(output_file, "w", encoding="utf-8") as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)
        f.write("\n")
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for nito78/llm-jp-3-3.7b-it_lora_all

Adapter
(1)
this model

Dataset used to train nito78/llm-jp-3-3.7b-it_lora_all