t5-fine-tuned-embedding-chunking
This model is a fine-tuned version of t5-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.6113
- Rouge1: 0.2152
- Rouge2: 0.102
- Rougel: 0.193
- Rougelsum: 0.193
- Bertscore Precision: 0.8727
- Bertscore Recall: 0.8246
- Bertscore F1: 0.8477
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bertscore Precision | Bertscore Recall | Bertscore F1 |
---|---|---|---|---|---|---|---|---|---|---|
2.0877 | 1.0 | 914 | 1.5922 | 0.2495 | 0.0981 | 0.2094 | 0.2093 | 0.8753 | 0.8198 | 0.8465 |
1.2277 | 2.0 | 1828 | 1.5686 | 0.2087 | 0.0885 | 0.1844 | 0.1843 | 0.8676 | 0.8213 | 0.8435 |
1.0059 | 3.0 | 2742 | 1.5758 | 0.2277 | 0.1021 | 0.1993 | 0.1992 | 0.8746 | 0.8239 | 0.8482 |
0.9106 | 4.0 | 3656 | 1.5946 | 0.2118 | 0.0977 | 0.1876 | 0.1875 | 0.8718 | 0.8244 | 0.8471 |
0.8652 | 5.0 | 4570 | 1.5985 | 0.217 | 0.1013 | 0.1937 | 0.1936 | 0.8715 | 0.8235 | 0.8465 |
0.8386 | 6.0 | 5484 | 1.6113 | 0.2152 | 0.102 | 0.193 | 0.193 | 0.8727 | 0.8246 | 0.8477 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for niteshsah-760/t5-fine-tuned-embedding-chunking
Base model
google-t5/t5-base