BART-LARGE-DIALOGSUM

This model is a fine-tuned version of ainize/bart-base-cnn on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2520
  • Rouge1: 45.9023
  • Rouge2: 21.1512
  • Rougel: 38.0547
  • Rougelsum: 41.0074
  • Gen Len: 53.296

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.5752 1.0 779 1.3340 44.5563 19.2131 36.7114 39.6611 50.176
1.3484 2.0 1558 1.2787 45.6688 20.9682 38.0344 40.8801 49.748
1.3058 3.0 2337 1.2614 45.9742 21.0722 38.2515 41.207 43.842
1.2514 4.0 3116 1.2537 46.0688 21.2466 38.5075 41.3072 45.766
1.2278 5.0 3895 1.2520 45.9023 21.1512 38.0547 41.0074 53.296

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
121
Safetensors
Model size
139M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for niteshsah-760/BART-LARGE-DIALOGSUM

Finetuned
(5)
this model
Finetunes
2 models