|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
base_model: mistralai/Mistral-7B-Instruct-v0.2 |
|
datasets: |
|
- generator |
|
metrics: |
|
- bleu |
|
- rouge |
|
model-index: |
|
- name: Mistral-7B-Instruct-v0.2-advisegpt-v0.6 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Mistral-7B-Instruct-v0.2-advisegpt-v0.6 |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the generator dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0767 |
|
- Bleu: {'bleu': 0.9584832765902116, 'precisions': [0.9778312591422885, 0.9625878953932084, 0.9518774970032065, 0.9430684559898991], 'brevity_penalty': 0.9997177244264667, 'length_ratio': 0.9997177642587203, 'translation_length': 1289338, 'reference_length': 1289702} |
|
- Rouge: {'rouge1': 0.9761023152523122, 'rouge2': 0.9590922549283836, 'rougeL': 0.9747297976860183, 'rougeLsum': 0.9758442544146716} |
|
- Exact Match: {'exact_match': 0.0} |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 3 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 10 |
|
- total_train_batch_size: 30 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge | Exact Match | |
|
|:-------------:|:------:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------:|:--------------------:| |
|
| 0.067 | 0.9998 | 809 | 0.0945 | {'bleu': 0.9492918853166353, 'precisions': [0.9733554685833311, 0.9543042005762523, 0.9412361771045687, 0.9307382413966919], 'brevity_penalty': 0.9994904502180469, 'length_ratio': 0.9994905799944483, 'translation_length': 1289045, 'reference_length': 1289702} | {'rouge1': 0.9712558044405124, 'rouge2': 0.9500703853191179, 'rougeL': 0.9690578078497468, 'rougeLsum': 0.9708044674114953} | {'exact_match': 0.0} | |
|
| 0.0527 | 1.9995 | 1618 | 0.0779 | {'bleu': 0.9568445996007577, 'precisions': [0.977026202258449, 0.961055539100332, 0.9498195483213825, 0.9405540074014527], 'brevity_penalty': 0.9998193217903225, 'length_ratio': 0.9998193381106644, 'translation_length': 1289469, 'reference_length': 1289702} | {'rouge1': 0.9753094821779227, 'rouge2': 0.9574822736836266, 'rougeL': 0.9737984768450723, 'rougeLsum': 0.9750220632065946} | {'exact_match': 0.0} | |
|
| 0.0471 | 2.9993 | 2427 | 0.0767 | {'bleu': 0.9584832765902116, 'precisions': [0.9778312591422885, 0.9625878953932084, 0.9518774970032065, 0.9430684559898991], 'brevity_penalty': 0.9997177244264667, 'length_ratio': 0.9997177642587203, 'translation_length': 1289338, 'reference_length': 1289702} | {'rouge1': 0.9761023152523122, 'rouge2': 0.9590922549283836, 'rougeL': 0.9747297976860183, 'rougeLsum': 0.9758442544146716} | {'exact_match': 0.0} | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.10.0 |
|
- Transformers 4.40.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |