Model Trained Using AutoTrain

  • Problem type: Tabular regression

Validation Metrics

  • r2: 0.8987710422047952
  • mse: 15.386801584871137
  • mae: 3.1008129119873047
  • rmse: 3.9226013798079378
  • rmsle: 0.049014949862444
  • loss: 3.9226013798079378

Best Params

  • learning_rate: 0.09858308825036341
  • reg_lambda: 1.7244892825164977e-06
  • reg_alpha: 0.004880162297132929
  • subsample: 0.5918267532876357
  • colsample_bytree: 0.6228647593929555
  • max_depth: 8
  • early_stopping_rounds: 440
  • n_estimators: 7000
  • eval_metric: rmse

Usage

import json
import joblib
import pandas as pd

model = joblib.load('model.joblib')
config = json.load(open('config.json'))

features = config['features']

# data = pd.read_csv("data.csv")
data = data[features]

predictions = model.predict(data)  # or model.predict_proba(data)

# predictions can be converted to original labels using label_encoders.pkl
Downloads last month
12
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support tabular-regression models for transformers library.