Validation Metrics

  • Accuracy: 0.8284240188362744
  • R2: 0.63
  • MSE: 2428.91
  • MAE: 34.33
  • RMSE: 49.28

Usage

import numpy as np
from numpy import random
import pandas as pd
import onnxruntime as ort

# Load the saved file
model_path = "rd2l_forest.onnx"
session = ort.InferenceSession(model_path)

# Define default naming scheme
input_name = session.get_inputs()[0].name
output_name = session.get_outputs()[0].name

def prediction(input_data : np.ndarray) -> float
    """
    Performs inference on the loaded ONNX model using the provided input data.

    Args:
        input_data (np.ndarray): An array of size (263,), this represents all of a singular players information

    Returns:
        float: The predicted cost of the player

    """
    
    # Convert to onnx input format and reshape 
    input_data = input_data.to_numpy(dtype=np.float32).reshape(1, -1)

    # Create prediction
    predictions = session.run([output_name], {input_name: input_data})

    # Convert to individual value
    return round(float(predictions[0][0][0]), 2)

sample_df = pd.DataFrame(np.random.rand(263))

prediction(sample_df)

license: mit

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.