whisper-large-v2-quantized.w4a16

Model Overview

  • Model Architecture: whisper-large-v2
    • Input: Audio-Text
    • Output: Text
  • Model Optimizations:
    • Weight quantization: INT4
    • Activation quantization: FP16
  • Release Date: 1/31/2025
  • Version: 1.0
  • Model Developers: Neural Magic

Quantized version of openai/whisper-large-v2.

Model Optimizations

This model was obtained by quantizing the weights of openai/whisper-large-v2 to INT4 data type, ready for inference with vLLM >= 0.5.2.

Deployment

Use with vLLM

This model can be deployed efficiently using the vLLM backend, as shown in the example below.

from vllm.assets.audio import AudioAsset
from vllm import LLM, SamplingParams

# prepare model
llm = LLM(
    model="neuralmagic/whisper-large-v2-W4A16-G128",
    max_model_len=448,
    max_num_seqs=400,
    limit_mm_per_prompt={"audio": 1},
)

# prepare inputs
inputs = {  # Test explicit encoder/decoder prompt
    "encoder_prompt": {
        "prompt": "",
        "multi_modal_data": {
            "audio": AudioAsset("winning_call").audio_and_sample_rate,
        },
    },
    "decoder_prompt": "<|startoftranscript|>",
}

# generate response
print("========== SAMPLE GENERATION ==============")
outputs = llm.generate(inputs, SamplingParams(temperature=0.0, max_tokens=64))
print(f"PROMPT  : {outputs[0].prompt}")
print(f"RESPONSE: {outputs[0].outputs[0].text}")
print("==========================================")

vLLM also supports OpenAI-compatible serving. See the documentation for more details.

Creation

This model was created with llm-compressor by running the code snippet below as part a multimodal announcement blog.

import torch
from datasets import load_dataset
from transformers import WhisperProcessor

from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.transformers import oneshot
from llmcompressor.transformers.tracing import TraceableWhisperForConditionalGeneration

# Select model and load it.
model_id = "openai/whisper-large-v2"
model = TraceableWhisperForConditionalGeneration.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype="auto",
)
processor = WhisperProcessor.from_pretrained(model_id)

# Configure processor the dataset task.
processor.tokenizer.set_prefix_tokens(language="en", task="transcribe")

# Select calibration dataset.
DATASET_ID = "MLCommons/peoples_speech"
DATASET_SUBSET = "test"
DATASET_SPLIT = "test"

# Select number of samples. 512 samples is a good place to start.
# Increasing the number of samples can improve accuracy.
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 2048

# Load dataset and preprocess.
ds = load_dataset(
    DATASET_ID,
    DATASET_SUBSET,
    split=f"{DATASET_SPLIT}[:{NUM_CALIBRATION_SAMPLES}]",
    trust_remote_code=True,
)

# Preprocess and Tokenize inputs.
def preprocess_and_tokenize(example):
    audio = example["audio"]["array"]
    sampling_rate = example["audio"]["sampling_rate"]
    text = " " + example["text"].capitalize()

    audio_inputs = processor(
        audio=audio,
        sampling_rate=sampling_rate,
        return_tensors="pt",
    )

    text_inputs = processor(
        text=text,
        add_special_tokens=True,
        return_tensors="pt"
    )
    text_inputs["decoder_input_ids"] = text_inputs["input_ids"]
    del text_inputs["input_ids"]

    return dict(**audio_inputs, **text_inputs)

ds = ds.map(preprocess_and_tokenize, remove_columns=ds.column_names)

# Define a oneshot data collator for multimodal inputs.
def data_collator(batch):
    assert len(batch) == 1
    return {key: torch.tensor(value) for key, value in batch[0].items()}

# Recipe
recipe = GPTQModifier(targets="Linear", scheme="W4A16", ignore=["lm_head"])

# Apply algorithms.
SAVE_DIR = model_id.split("/")[1] + "-W4A16-G128"

oneshot(
    model=model,
    dataset=ds,
    recipe=recipe,
    max_seq_length=MAX_SEQUENCE_LENGTH,
    num_calibration_samples=NUM_CALIBRATION_SAMPLES,
    data_collator=data_collator,
    output_dir=SAVE_DIR,
)

BibTeX entry and citation info

@misc{radford2022whisper,
  doi = {10.48550/ARXIV.2212.04356},
  url = {https://arxiv.org/abs/2212.04356},
  author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya},
  title = {Robust Speech Recognition via Large-Scale Weak Supervision},
  publisher = {arXiv},
  year = {2022},
  copyright = {arXiv.org perpetual, non-exclusive license}
}
Downloads last month
30
Safetensors
Model size
279M params
Tensor type
I64
F32
I32
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for neuralmagic/whisper-large-v2-W4A16-G128

Quantized
(4)
this model