nm-research's picture
Update README.md
d2e0ddc verified
---
tags:
- fp8
- vllm
license: apache-2.0
license_link: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
language:
- en
base_model: ibm-granite/granite-3.1-8b-base
library_name: transformers
---
# granite-3.1-8b-base-FP8-dynamic
## Model Overview
- **Model Architecture:** granite-3.1-8b-base
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** FP8
- **Activation quantization:** FP8
- **Release Date:** 1/8/2025
- **Version:** 1.0
- **Model Developers:** Neural Magic
Quantized version of [ibm-granite/granite-3.1-8b-base](https://huggingface.co/ibm-granite/granite-3.1-8b-base).
It achieves an average score of 66.94 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 67.44.
### Model Optimizations
This model was obtained by quantizing the weights and activations of [ibm-granite/granite-3.1-8b-base](https://huggingface.co/ibm-granite/granite-3.1-8b-base) to FP8 data type, ready for inference with vLLM >= 0.5.2.
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized.
## Deployment
### Use with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
max_model_len, tp_size = 4096, 1
model_name = "neuralmagic/granite-3.1-8b-base-FP8-dynamic"
tokenizer = AutoTokenizer.from_pretrained(model_name)
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True)
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
messages_list = [
[{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
]
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)
```
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
<details>
<summary>Model Creation Code</summary>
```bash
python quantize.py --model_id ibm-granite/granite-3.1-8b-base --save_path "output_dir/"
```
```python
import argparse
from transformers import AutoModelForCausalLM, AutoTokenizer
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot
import os
def main():
parser = argparse.ArgumentParser(description='Quantize a transformer model to FP8')
parser.add_argument('--model_id', type=str, required=True,
help='The model ID from HuggingFace (e.g., "meta-llama/Meta-Llama-3-8B-base")')
parser.add_argument('--save_path', type=str, default='.',
help='Custom path to save the quantized model. If not provided, will use model_name-FP8-dynamic')
args = parser.parse_args()
# Load model
model = AutoModelForCausalLM.from_pretrained(
args.model_id, device_map="auto", torch_dtype="auto", trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(args.model_id)
# Configure the quantization algorithm and scheme
recipe = QuantizationModifier(
targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"]
)
# Apply quantization
oneshot(model=model, recipe=recipe)
save_path = os.path.join(args.save_path, args.model_id.split("/")[1] + "-FP8-dynamic")
os.makedirs(save_path, exist_ok=True)
# Save to disk in compressed-tensors format
model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")
if __name__ == "__main__":
main()
```
</details>
## Evaluation
The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard), OpenLLM Leaderboard [V2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/) and on [HumanEval](https://github.com/neuralmagic/evalplus), using the following commands:
<details>
<summary>Evaluation Commands</summary>
OpenLLM Leaderboard V1:
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/granite-3.1-8b-base-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
--tasks openllm \
--write_out \
--batch_size auto \
--output_path output_dir \
--show_config
```
#### HumanEval
##### Generation
```
python3 codegen/generate.py \
--model neuralmagic/granite-3.1-8b-base-FP8-dynamic \
--bs 16 \
--temperature 0.2 \
--n_samples 50 \
--root "." \
--dataset humaneval
```
##### Sanitization
```
python3 evalplus/sanitize.py \
humaneval/neuralmagic--granite-3.1-8b-base-FP8-dynamic_vllm_temp_0.2
```
##### Evaluation
```
evalplus.evaluate \
--dataset humaneval \
--samples humaneval/neuralmagic--granite-3.1-8b-base-FP8-dynamic_vllm_temp_0.2-sanitized
```
</details>
### Accuracy
<table>
<thead>
<tr>
<th>Category</th>
<th>Metric</th>
<th>ibm-granite/granite-3.1-8b-base</th>
<th>neuralmagic/granite-3.1-8b-base-FP8-dynamic</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="7"><b>OpenLLM V1</b></td>
<td>ARC-Challenge (Acc-Norm, 25-shot)</td>
<td>64.68</td>
<td>64.16</td>
<td>99.20</td>
</tr>
<tr>
<td>GSM8K (Strict-Match, 5-shot)</td>
<td>60.88</td>
<td>58.45</td>
<td>95.99</td>
</tr>
<tr>
<td>HellaSwag (Acc-Norm, 10-shot)</td>
<td>83.52</td>
<td>83.46</td>
<td>99.93</td>
</tr>
<tr>
<td>MMLU (Acc, 5-shot)</td>
<td>63.33</td>
<td>63.35</td>
<td>100.03</td>
</tr>
<tr>
<td>TruthfulQA (MC2, 0-shot)</td>
<td>51.33</td>
<td>51.56</td>
<td>100.45</td>
</tr>
<tr>
<td>Winogrande (Acc, 5-shot)</td>
<td>80.90</td>
<td>80.66</td>
<td>99.70</td>
</tr>
<tr>
<td><b>Average Score</b></td>
<td><b>67.44</b></td>
<td><b>66.94</b></td>
<td><b>99.26</b></td>
</tr>
<tr>
<td rowspan="2"><b>Coding</b></td>
<td>HumanEval Pass@1</td>
<td>44.10</td>
<td>44.80</td>
<td><b>101.59</b></td>
</tr>
</tbody>
</table>
## Inference Performance
This model achieves up to 1.5x speedup in single-stream deployment and up to 1.1x speedup in multi-stream asynchronous deployment on L40 GPUs.
The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.6.6.post1, and [GuideLLM](https://github.com/neuralmagic/guidellm).
<details>
<summary>Benchmarking Command</summary>
```
guidellm --model neuralmagic/granite-3.1-8b-base-FP8-dynamic --target "http://localhost:8000/v1" --data-type emulated --data "prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>" --max seconds 360 --backend aiohttp_server
```
</details>
### Single-stream performance (measured with vLLM version 0.6.6.post1)
<table>
<tr>
<td></td>
<td></td>
<td></td>
<th style="text-align: center;" colspan="7" >Latency (s)</th>
</tr>
<tr>
<th>GPU class</th>
<th>Model</th>
<th>Speedup</th>
<th>Code Completion<br>prefill: 256 tokens<br>decode: 1024 tokens</th>
<th>Docstring Generation<br>prefill: 768 tokens<br>decode: 128 tokens</th>
<th>Code Fixing<br>prefill: 1024 tokens<br>decode: 1024 tokens</th>
<th>RAG<br>prefill: 1024 tokens<br>decode: 128 tokens</th>
<th>Instruction Following<br>prefill: 256 tokens<br>decode: 128 tokens</th>
<th>Multi-turn Chat<br>prefill: 512 tokens<br>decode: 256 tokens</th>
<th>Large Summarization<br>prefill: 4096 tokens<br>decode: 512 tokens</th>
</tr>
<tr>
<td style="vertical-align: middle;" rowspan="3" >L40</td>
<td>granite-3.1-8b-base</td>
<td></td>
<td>25.1</td>
<td>3.2</td>
<td>25.3</td>
<td>3.2</td>
<td>3.2</td>
<td>6.3</td>
<td>13.4</td>
</tr>
<tr>
<td>granite-3.1-8b-base-FP8-dynamic<br>(this model)</td>
<td>1.47</td>
<td>16.8</td>
<td>2.2</td>
<td>17.1</td>
<td>2.2</td>
<td>2.1</td>
<td>4.2</td>
<td>9.3</td>
</tr>
<tr>
<td>granite-3.1-8b-base-quantized.w4a16</td>
<td>2.72</td>
<td>8.9</td>
<td>1.2</td>
<td>9.2</td>
<td>1.2</td>
<td>1.1</td>
<td>2.3</td>
<td>5.3</td>
</tr>
</table>
### Multi-stream asynchronous performance (measured with vLLM version 0.6.6.post1)
<table>
<tr>
<td></td>
<td></td>
<td></td>
<th style="text-align: center;" colspan="7" >Maximum Throughput (Queries per Second)</th>
</tr>
<tr>
<th>GPU class</th>
<th>Model</th>
<th>Speedup</th>
<th>Code Completion<br>prefill: 256 tokens<br>decode: 1024 tokens</th>
<th>Docstring Generation<br>prefill: 768 tokens<br>decode: 128 tokens</th>
<th>Code Fixing<br>prefill: 1024 tokens<br>decode: 1024 tokens</th>
<th>RAG<br>prefill: 1024 tokens<br>decode: 128 tokens</th>
<th>Instruction Following<br>prefill: 256 tokens<br>decode: 128 tokens</th>
<th>Multi-turn Chat<br>prefill: 512 tokens<br>decode: 256 tokens</th>
<th>Large Summarization<br>prefill: 4096 tokens<br>decode: 512 tokens</th>
</tr>
<tr>
<td style="vertical-align: middle;" rowspan="3" >L40</td>
<td>granite-3.1-8b-base</td>
<td></td>
<td>1.4</td>
<td>7.8</td>
<td>1.1</td>
<td>6.2</td>
<td>15.5</td>
<td>6.0</td>
<td>0.7</td>
</tr>
<tr>
<td>granite-3.1-8b-base-FP8-dynamic<br>(this model)</td>
<td>1.12</td>
<td>2.1</td>
<td>7.4</td>
<td>1.3</td>
<td>5.9</td>
<td>15.3</td>
<td>6.9</td>
<td>0.8</td>
</tr>
<tr>
<td>granite-3.1-2b-base-quantized.w4a16</td>
<td>1.29</td>
<td>2.4</td>
<td>8.9</td>
<td>1.4</td>
<td>7.1</td>
<td>17.8</td>
<td>7.8</td>
<td>1.0</td>
</tr>
</table>