DeepSeek-R1-Distill-Llama-8B-quantized.w8a8
Model Overview
- Model Architecture: LlamaForCausalLM
- Input: Text
- Output: Text
- Model Optimizations:
- Weight quantization: INT8
- Activation quantization: INT8
- Release Date: 2/1/2025
- Version: 1.0
- Model Developers: Neural Magic
Quantized version of DeepSeek-R1-Distill-Llama-8B.
Model Optimizations
This model was obtained by quantizing the weights and activations of DeepSeek-R1-Distill-Llama-8B to INT8 data type. This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x). Weight quantization also reduces disk size requirements by approximately 50%.
Only the weights and activations of the linear operators within transformers blocks are quantized. Weights are quantized using a symmetric per-channel scheme, whereas quantizations are quantized using a symmetric per-token scheme. The GPTQ algorithm is applied for quantization, as implemented in the llm-compressor library.
Use with vLLM
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
number_gpus = 1
model_name = "neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8"
tokenizer = AutoTokenizer.from_pretrained(model_name)
sampling_params = SamplingParams(temperature=0.6, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
llm = LLM(model=model_name, tensor_parallel_size=number_gpus, trust_remote_code=True)
messages_list = [
[{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
]
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)
vLLM also supports OpenAI-compatible serving. See the documentation for more details.
Creation
This model was created with llm-compressor by running the code snippet below.
from transformers import AutoModelForCausalLM, AutoTokenizer
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
from llmcompressor.transformers import oneshot
# Load model
model_stub = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
model_name = model_stub.split("/")[-1]
num_samples = 1024
max_seq_len = 8192
tokenizer = AutoTokenizer.from_pretrained(model_stub)
model = AutoModelForCausalLM.from_pretrained(
model_stub,
device_map=device_map,
torch_dtype="auto",
)
def preprocess_fn(example):
return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}
ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
ds = ds.map(preprocess_fn)
# Configure the quantization algorithm and scheme
recipe = [
SmoothQuantModifier(smoothing_strength=0.8),
QuantizationModifier(
targets="Linear",
scheme="W8A8",
ignore=["lm_head"],
dampening_frac=0.1,
),
]
# Apply quantization
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=max_seq_len,
num_calibration_samples=num_samples,
)
# Save to disk in compressed-tensors format
save_path = model_name + "-quantized.w8a8
model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")
Evaluation
The model was evaluated on OpenLLM Leaderboard V1 and V2, using the following commands:
OpenLLM Leaderboard V1:
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8",dtype=auto,max_model_len=4096,tensor_parallel_size=1,enable_chunked_prefill=True \
--tasks openllm \
--write_out \
--batch_size auto \
--output_path output_dir \
--show_config
OpenLLM Leaderboard V2:
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8",dtype=auto,max_model_len=4096,tensor_parallel_size=1,enable_chunked_prefill=True \
--apply_chat_template \
--fewshot_as_multiturn \
--tasks leaderboard \
--write_out \
--batch_size auto \
--output_path output_dir \
--show_config
Accuracy
Category | Metric | deepseek-ai/DeepSeek-R1-Distill-Llama-8B | neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8 | Recovery |
---|---|---|---|---|
OpenLLM V1 | ARC-Challenge (Acc-Norm, 25-shot) | 45.05 | 45.22 | 100.4% |
GSM8K (Strict-Match, 5-shot) | 62.77 | 62.09 | 98.9% | |
HellaSwag (Acc-Norm, 10-shot) | 76.78 | 76.80 | 100.0% | |
MMLU (Acc, 5-shot) | 55.65 | 55.53 | 99.8% | |
TruthfulQA (MC2, 0-shot) | 50.55 | 49.89 | 98.7% | |
Winogrande (Acc, 5-shot) | 68.51 | 67.40 | 98.4% | |
Average Score | 59.88 | 59.49 | 99.3% | |
OpenLLM V2 | IFEval (Inst Level Strict Acc, 0-shot) | 38.34 | 39.07 | 101.9% |
BBH (Acc-Norm, 3-shot) | 38.19 | 39.57 | 103.6% | |
Math-Hard (Exact-Match, 4-shot) | 0.00 | 0.00 | --- | |
GPQA (Acc-Norm, 0-shot) | 28.87 | 27.28 | 94.5% | |
MUSR (Acc-Norm, 0-shot) | 33.31 | 34.50 | 103.6% | |
MMLU-Pro (Acc, 5-shot) | 20.10 | 20.60 | 102.4% | |
Average Score | 26.47 | 26.84 | 101.4% | |
Coding | HumanEval (pass@1) | 49.90 | 50.90 | 102.0% |
HumanEval (pass@10) | 68.90 | 68.70 | 99.7% | |
HumanEval+ (pass@10) | 44.10 | 46.70 | 105.9% | |
HumanEval+ (pass@10) | 62.90 | 64.30 | 102.2% |
- Downloads last month
- 53
Model tree for neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8
Base model
deepseek-ai/DeepSeek-R1-Distill-Llama-8B