nepp1d0's picture
update model card README.md
7806d1d
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: prot_bert_classification_finetuned
    results: []

prot_bert_classification_finetuned

This model is a fine-tuned version of nepp1d0/prot_bert-finetuned-smiles-bindingDB on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5675
  • Accuracy: 0.7299
  • F1: 0.7377
  • Precision: 0.6995
  • Recall: 0.7803

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 3
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • num_epochs: 6
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.4221 1.0 3332 0.6152 0.6615 0.6711 0.6367 0.7093
0.4133 2.0 6664 0.5840 0.6845 0.6718 0.6805 0.6634
0.4293 3.0 9996 0.5727 0.7116 0.7094 0.6961 0.7232
0.3098 4.0 13328 0.5636 0.7163 0.7220 0.6904 0.7566
0.3881 5.0 16660 0.5629 0.7265 0.7377 0.6918 0.7900
0.4943 6.0 19992 0.5675 0.7299 0.7377 0.6995 0.7803

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0+cu113
  • Datasets 2.1.0
  • Tokenizers 0.12.1