nandavikas16's picture
Model save
f14ee4b verified
|
raw
history blame
3.34 kB
metadata
license: mit
base_model: facebook/bart-large-cnn
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: bart-large-cnn-finetuned-scope-summarization
    results: []

bart-large-cnn-finetuned-scope-summarization

This model is a fine-tuned version of facebook/bart-large-cnn on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0578
  • Rouge1: 74.2613
  • Rouge2: 58.7063
  • Rougel: 63.9504
  • Rougelsum: 64.1404

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
0.8985 1.0 48 0.6541 46.8501 29.7327 36.488 36.5549
0.6225 2.0 96 0.5766 53.306 34.1262 40.0055 39.8306
0.5508 3.0 144 0.5222 55.9759 36.614 41.5281 41.4843
0.4963 4.0 192 0.4711 57.6183 37.4078 42.6881 42.7515
0.4517 5.0 240 0.4193 59.2425 39.9758 42.3079 42.2173
0.4021 6.0 288 0.3792 59.5026 41.3313 46.1961 46.0462
0.3672 7.0 336 0.3145 62.5542 44.3172 48.4545 48.421
0.3153 8.0 384 0.2816 63.8301 46.3536 50.2103 50.1203
0.268 9.0 432 0.2598 64.191 47.4322 51.7505 51.8051
0.2159 10.0 480 0.2041 67.4345 49.7921 53.84 53.9574
0.1714 11.0 528 0.1416 68.2944 51.3248 56.1006 56.0528
0.1257 12.0 576 0.0961 69.7701 53.5417 58.2727 58.2473
0.0991 13.0 624 0.0717 69.9164 53.6164 59.4382 59.518
0.0699 14.0 672 0.0675 71.3498 55.64 60.2844 60.4973
0.0526 15.0 720 0.0814 72.2287 56.8939 60.9719 61.2308
0.0408 16.0 768 0.0843 71.7777 57.1413 62.0411 61.9723
0.0315 17.0 816 0.0525 72.5746 57.5505 61.6754 61.8729
0.0237 18.0 864 0.0542 72.0154 56.9233 61.3044 61.4721
0.0187 19.0 912 0.0573 73.4681 58.9845 64.4143 64.5341
0.0157 20.0 960 0.0578 74.2613 58.7063 63.9504 64.1404

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2