SentenceTransformer based on BookingCare/bkcare-bert-pretrained
This is a sentence-transformers model finetuned from BookingCare/bkcare-bert-pretrained on the facebook/xnli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BookingCare/bkcare-bert-pretrained
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- **Languages:**vi
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("nampham1106/bkcare-text-emb-v1.0")
# Run inference
sentences = [
'Tôi sẽ làm tất cả những gì ông muốn. julius hạ khẩu súng lục .',
'Tôi sẽ ban cho anh những lời chúc của anh , julius bỏ súng xuống .',
'Nó đến trong túi 400 pound .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev-768
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6867 |
spearman_cosine | 0.6701 |
pearson_manhattan | 0.6734 |
spearman_manhattan | 0.669 |
pearson_euclidean | 0.6744 |
spearman_euclidean | 0.6701 |
pearson_dot | 0.6867 |
spearman_dot | 0.6701 |
pearson_max | 0.6867 |
spearman_max | 0.6701 |
Semantic Similarity
- Dataset:
sts-dev-512
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6851 |
spearman_cosine | 0.6686 |
pearson_manhattan | 0.6727 |
spearman_manhattan | 0.6683 |
pearson_euclidean | 0.6739 |
spearman_euclidean | 0.6695 |
pearson_dot | 0.6803 |
spearman_dot | 0.6631 |
pearson_max | 0.6851 |
spearman_max | 0.6695 |
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for nampham1106/bkcare-embed-text-v1.0
Base model
BookingCare/bkcare-bert-pretrainedDataset used to train nampham1106/bkcare-embed-text-v1.0
Evaluation results
- Pearson Cosine on sts dev 768self-reported0.687
- Spearman Cosine on sts dev 768self-reported0.670
- Pearson Manhattan on sts dev 768self-reported0.673
- Spearman Manhattan on sts dev 768self-reported0.669
- Pearson Euclidean on sts dev 768self-reported0.674
- Spearman Euclidean on sts dev 768self-reported0.670
- Pearson Dot on sts dev 768self-reported0.687
- Spearman Dot on sts dev 768self-reported0.670
- Pearson Max on sts dev 768self-reported0.687
- Spearman Max on sts dev 768self-reported0.670