|
from llava.model.multimodal_encoder.processor import Blip2ImageTrainProcessor |
|
from llava.model import LlavaThothForCausalLM |
|
from transformers import AutoTokenizer |
|
from llava.constants import MM_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_VIDEO_PATCH_TOKEN, DEFAULT_VIDEO_TOKEN, DEFAULT_VIDEO_START_TOKEN, DEFAULT_VIDEO_END_TOKEN |
|
from llava.conversation import conv_templates |
|
import torch |
|
from llava.mm_utils import tokenizer_image_token, process_images_v2, KeywordsStoppingCriteria |
|
import numpy as np |
|
from PIL import Image |
|
import os |
|
|
|
|
|
NUM_SEGMENTS = 10 |
|
|
|
|
|
def load_model(model_path, device_map): |
|
kwargs = {"device_map": device_map} |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
model = LlavaThothForCausalLM.from_pretrained( |
|
model_path, |
|
low_cpu_mem_usage=True, |
|
**kwargs |
|
) |
|
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_VIDEO_START_TOKEN, DEFAULT_VIDEO_END_TOKEN], special_tokens=True) |
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
|
vision_tower = model.get_vision_tower() |
|
if not vision_tower.is_loaded: |
|
vision_tower.load_model(device_map=device_map) |
|
|
|
image_processor = Blip2ImageTrainProcessor( |
|
image_size=model.config.img_size, |
|
is_training=False) |
|
model.to(torch.float16) |
|
return model, tokenizer, image_processor |
|
|
|
|
|
def generate_input_ids(tokenizer): |
|
conv = conv_templates['thoth'].copy() |
|
qs = "Describe the following video in detail." |
|
qs = DEFAULT_VIDEO_START_TOKEN + DEFAULT_VIDEO_TOKEN + DEFAULT_VIDEO_END_TOKEN + '\n' + qs |
|
conv.append_message(conv.roles[0], qs) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
input_ids = tokenizer_image_token(prompt, tokenizer, MM_TOKEN_INDEX, return_tensors='pt').unsqueeze(0) |
|
return input_ids, conv |
|
|
|
|
|
def generate_images(frame_folder, image_processor, model_cfg): |
|
images = load_frames(frame_folder) |
|
if len(images) > NUM_SEGMENTS: |
|
images = uniform_sample(images, NUM_SEGMENTS) |
|
return process_images_v2(images, image_processor, model_cfg) |
|
|
|
|
|
def uniform_sample(frames, num_segments): |
|
indices = np.linspace(start=0, stop=len(frames) - 1, num=num_segments).astype(int) |
|
frames = [frames[ind] for ind in indices] |
|
return frames |
|
|
|
def load_frames(frames_dir): |
|
results = [] |
|
image_files = [(int(os.path.splitext(img)[0]), img) for img in os.listdir(frames_dir) if img.endswith('jpg')] |
|
image_files = sorted(image_files, key=lambda img: img[0]) |
|
|
|
for frame_name in image_files: |
|
image_path = f"{frames_dir}/{frame_name[1]}" |
|
image = Image.open(image_path).convert('RGB') |
|
results.append(image) |
|
return results |
|
|
|
|
|
class MASPVisionWrapper(torch.nn.Module): |
|
|
|
def __init__(self, vision_tower, qformer, projector, query_tokens, frame_position_encoding, ln_vision): |
|
super().__init__() |
|
self.vision_tower = vision_tower |
|
self.qformer = qformer |
|
self.projector = projector |
|
self.query_tokens = query_tokens |
|
self.ln_vision = ln_vision |
|
self.frame_position_encoding = frame_position_encoding |
|
|
|
def forward(self, images): |
|
|
|
image_features = self.vision_tower(images.flatten(0, 1)) |
|
image_features = self.ln_vision(image_features) |
|
attn_mask = torch.ones(image_features.size()[:-1], dtype=torch.long).to(image_features.device) |
|
query_tokens = self.query_tokens.expand(image_features.shape[0], -1, -1) |
|
dtype_ = self.vision_tower.dtype |
|
image_features = self.qformer.bert( |
|
query_embeds= query_tokens.to(dtype_), |
|
encoder_hidden_states=image_features.to(dtype_), |
|
encoder_attention_mask=attn_mask, |
|
return_dict=True |
|
).last_hidden_state.to(dtype_) |
|
frame_ids = torch.arange(images.shape[0], dtype=torch.long, device=image_features.device).unsqueeze(1) |
|
frame_ids = frame_ids.repeat(1, images.shape[1]).flatten(0, 1) |
|
image_features += self.frame_position_encoding(frame_ids).unsqueeze(-2) |
|
return self.projector(image_features) |
|
|
|
|
|
def inference(model_path, frame_folder): |
|
|
|
model, tokenizer, image_processor = load_model(model_path, device_map={"":0}) |
|
input_ids, conv = generate_input_ids(tokenizer) |
|
images = generate_images(frame_folder, image_processor, model.config).to(model.device).half() |
|
vision_module = MASPVisionWrapper( |
|
vision_tower=model.get_vision_tower(), |
|
qformer=model.get_qformer(), |
|
projector=model.get_model().mm_projector, |
|
query_tokens=model.get_query_tokens(), |
|
frame_position_encoding=model.get_frame_position_encoding(), |
|
ln_vision=model.get_ln_vision(), |
|
) |
|
stop_str = conv.sep if conv.sep2 is None else conv.sep2 |
|
keywords = [stop_str] |
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) |
|
input_ids = input_ids[0].to(model.device) |
|
|
|
|
|
with torch.inference_mode(): |
|
|
|
image_features = vision_module(images).flatten(0, 1) |
|
|
|
vision_token_indice = torch.where(input_ids == MM_TOKEN_INDEX)[0][0] |
|
pre_text_token = model.get_model().embed_tokens(input_ids[:vision_token_indice]) |
|
post_text_token = model.get_model().embed_tokens(input_ids[vision_token_indice+1:]) |
|
inputs_embeds = torch.cat([pre_text_token, image_features, post_text_token]).unsqueeze(0) |
|
|
|
|
|
output_ids = model.generate_from_base_class( |
|
inputs_embeds=inputs_embeds, |
|
do_sample=True, |
|
temperature=0.01, |
|
top_p=None, |
|
num_beams=1, |
|
max_new_tokens=1024, |
|
pad_token_id=tokenizer.eos_token_id, |
|
use_cache=True, |
|
stopping_criteria=[stopping_criteria] |
|
) |
|
output = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0] |
|
output = output.strip() |
|
print(output) |
|
|
|
|
|
if __name__ == '__main__': |
|
model_path = '/mnt/bn/algo-masp-nas-2/xiangchen/model/masp_models/llava-thothv2_mar_release_all_data' |
|
frame_folder = '/mnt/bn/yukunfeng-nasdrive/xiangchen/masp_data/20231110_ttp/video/v12044gd0000cl5c6rfog65i2eoqcqig' |
|
inference(model_path, frame_folder) |