File size: 6,659 Bytes
bbfa6f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
from llava.model.multimodal_encoder.processor import Blip2ImageTrainProcessor
from llava.model import LlavaThothForCausalLM
from transformers import AutoTokenizer
from llava.constants import MM_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_VIDEO_PATCH_TOKEN, DEFAULT_VIDEO_TOKEN, DEFAULT_VIDEO_START_TOKEN, DEFAULT_VIDEO_END_TOKEN
from llava.conversation import conv_templates
import torch
from llava.mm_utils import tokenizer_image_token, process_images_v2, KeywordsStoppingCriteria
import numpy as np
from PIL import Image
import os
NUM_SEGMENTS = 10
def load_model(model_path, device_map):
kwargs = {"device_map": device_map}
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = LlavaThothForCausalLM.from_pretrained(
model_path,
low_cpu_mem_usage=True,
**kwargs
)
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_VIDEO_START_TOKEN, DEFAULT_VIDEO_END_TOKEN], special_tokens=True)
model.resize_token_embeddings(len(tokenizer))
vision_tower = model.get_vision_tower()
if not vision_tower.is_loaded:
vision_tower.load_model(device_map=device_map)
image_processor = Blip2ImageTrainProcessor(
image_size=model.config.img_size,
is_training=False)
model.to(torch.float16)
return model, tokenizer, image_processor
def generate_input_ids(tokenizer):
conv = conv_templates['thoth'].copy()
qs = "Describe the following video in detail."
qs = DEFAULT_VIDEO_START_TOKEN + DEFAULT_VIDEO_TOKEN + DEFAULT_VIDEO_END_TOKEN + '\n' + qs
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, MM_TOKEN_INDEX, return_tensors='pt').unsqueeze(0)
return input_ids, conv
def generate_images(frame_folder, image_processor, model_cfg):
images = load_frames(frame_folder)
if len(images) > NUM_SEGMENTS:
images = uniform_sample(images, NUM_SEGMENTS)
return process_images_v2(images, image_processor, model_cfg)
def uniform_sample(frames, num_segments):
indices = np.linspace(start=0, stop=len(frames) - 1, num=num_segments).astype(int)
frames = [frames[ind] for ind in indices]
return frames
def load_frames(frames_dir):
results = []
image_files = [(int(os.path.splitext(img)[0]), img) for img in os.listdir(frames_dir) if img.endswith('jpg')]
image_files = sorted(image_files, key=lambda img: img[0])
for frame_name in image_files:
image_path = f"{frames_dir}/{frame_name[1]}"
image = Image.open(image_path).convert('RGB')
results.append(image)
return results
class MASPVisionWrapper(torch.nn.Module):
def __init__(self, vision_tower, qformer, projector, query_tokens, frame_position_encoding, ln_vision):
super().__init__()
self.vision_tower = vision_tower
self.qformer = qformer
self.projector = projector
self.query_tokens = query_tokens
self.ln_vision = ln_vision
self.frame_position_encoding = frame_position_encoding
def forward(self, images):
# images: [num_frames, patches, 3, image_size, image_size]
image_features = self.vision_tower(images.flatten(0, 1))
image_features = self.ln_vision(image_features)
attn_mask = torch.ones(image_features.size()[:-1], dtype=torch.long).to(image_features.device) # [num_frames * num_patches, 256]
query_tokens = self.query_tokens.expand(image_features.shape[0], -1, -1) # [num_frames * num_patches, 32, 768]
dtype_ = self.vision_tower.dtype
image_features = self.qformer.bert(
query_embeds= query_tokens.to(dtype_),
encoder_hidden_states=image_features.to(dtype_),
encoder_attention_mask=attn_mask,
return_dict=True
).last_hidden_state.to(dtype_)
frame_ids = torch.arange(images.shape[0], dtype=torch.long, device=image_features.device).unsqueeze(1)
frame_ids = frame_ids.repeat(1, images.shape[1]).flatten(0, 1) # [num_frames * num_patches]
image_features += self.frame_position_encoding(frame_ids).unsqueeze(-2) #[num_frames, 1, 768]
return self.projector(image_features)
def inference(model_path, frame_folder):
# prepare
model, tokenizer, image_processor = load_model(model_path, device_map={"":0})
input_ids, conv = generate_input_ids(tokenizer)
images = generate_images(frame_folder, image_processor, model.config).to(model.device).half() # [num_frames, patches, 3, image_size, image_size]
vision_module = MASPVisionWrapper(
vision_tower=model.get_vision_tower(),
qformer=model.get_qformer(),
projector=model.get_model().mm_projector,
query_tokens=model.get_query_tokens(),
frame_position_encoding=model.get_frame_position_encoding(),
ln_vision=model.get_ln_vision(),
)
stop_str = conv.sep if conv.sep2 is None else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
input_ids = input_ids[0].to(model.device) # [token_len]
# infernece
with torch.inference_mode():
# get image feature
image_features = vision_module(images).flatten(0, 1) # [num_frames * num_patches * num_query_token, 4096]
# concat with text features
vision_token_indice = torch.where(input_ids == MM_TOKEN_INDEX)[0][0]
pre_text_token = model.get_model().embed_tokens(input_ids[:vision_token_indice])
post_text_token = model.get_model().embed_tokens(input_ids[vision_token_indice+1:])
inputs_embeds = torch.cat([pre_text_token, image_features, post_text_token]).unsqueeze(0) # [1, num_token, 4096]
# llm.generate
output_ids = model.generate_from_base_class(
inputs_embeds=inputs_embeds,
do_sample=True,
temperature=0.01,
top_p=None,
num_beams=1,
max_new_tokens=1024,
pad_token_id=tokenizer.eos_token_id,
use_cache=True,
stopping_criteria=[stopping_criteria]
)
output = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
output = output.strip()
print(output)
if __name__ == '__main__':
model_path = '/mnt/bn/algo-masp-nas-2/xiangchen/model/masp_models/llava-thothv2_mar_release_all_data'
frame_folder = '/mnt/bn/yukunfeng-nasdrive/xiangchen/masp_data/20231110_ttp/video/v12044gd0000cl5c6rfog65i2eoqcqig'
inference(model_path, frame_folder) |