|
--- |
|
license: apache-2.0 |
|
base_model: sentence-transformers/all-mpnet-base-v2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: IKT_classifier_mitigation_best |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# IKT_classifier_mitigation_best |
|
|
|
This model is a fine-tuned version of [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6517 |
|
- Precision Micro: 0.3667 |
|
- Precision Weighted: 0.4273 |
|
- Precision Samples: 0.4539 |
|
- Recall Micro: 0.7543 |
|
- Recall Weighted: 0.7543 |
|
- Recall Samples: 0.7982 |
|
- F1-score: 0.5422 |
|
- Accuracy: 0.1654 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3.6181464293180716e-05 |
|
- train_batch_size: 3 |
|
- eval_batch_size: 3 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 300.0 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision Micro | Precision Weighted | Precision Samples | Recall Micro | Recall Weighted | Recall Samples | F1-score | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------------:|:-----------------:|:------------:|:---------------:|:--------------:|:--------:|:--------:| |
|
| No log | 1.0 | 398 | 1.0635 | 0.1718 | 0.2238 | 0.1763 | 0.7714 | 0.7714 | 0.7945 | 0.2794 | 0.0 | |
|
| 1.2442 | 2.0 | 796 | 0.8827 | 0.2167 | 0.2522 | 0.2388 | 0.7543 | 0.7543 | 0.7863 | 0.3518 | 0.0 | |
|
| 0.9539 | 3.0 | 1194 | 0.7579 | 0.2710 | 0.3279 | 0.2979 | 0.7543 | 0.7543 | 0.7932 | 0.4134 | 0.0150 | |
|
| 0.8265 | 4.0 | 1592 | 0.6773 | 0.3377 | 0.3943 | 0.3937 | 0.7429 | 0.7429 | 0.7901 | 0.4961 | 0.0752 | |
|
| 0.8265 | 5.0 | 1990 | 0.6517 | 0.3667 | 0.4273 | 0.4539 | 0.7543 | 0.7543 | 0.7982 | 0.5422 | 0.1654 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|