emotion_model
This model is a fine-tuned version of xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1691
- Macro F1: 0.5721
- Micro F1: 0.7014
- Accuracy: 0.8780
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Macro F1 | Micro F1 | Accuracy |
---|---|---|---|---|---|---|
0.2428 | 1.0 | 143 | 0.2269 | 0.0016 | 0.0028 | 0.7811 |
0.1979 | 2.0 | 286 | 0.1774 | 0.4377 | 0.6399 | 0.8642 |
0.1712 | 3.0 | 429 | 0.1669 | 0.4939 | 0.6727 | 0.8729 |
0.1571 | 4.0 | 572 | 0.1635 | 0.5474 | 0.6889 | 0.8768 |
0.1426 | 5.0 | 715 | 0.1666 | 0.5658 | 0.6881 | 0.8737 |
0.1335 | 6.0 | 858 | 0.1665 | 0.5824 | 0.6999 | 0.8750 |
0.1236 | 7.0 | 1001 | 0.1682 | 0.5765 | 0.6940 | 0.8735 |
0.1152 | 8.0 | 1144 | 0.1697 | 0.5747 | 0.6964 | 0.8752 |
0.1104 | 9.0 | 1287 | 0.1732 | 0.5708 | 0.6930 | 0.8732 |
0.1069 | 10.0 | 1430 | 0.1742 | 0.5814 | 0.6959 | 0.8738 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.3.1.post300
- Datasets 2.2.1
- Tokenizers 0.21.0
- Downloads last month
- 30
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for msgfrom96/emotion_model
Base model
FacebookAI/xlm-roberta-large