See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: false
base_model: Artples/L-MChat-7b
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 159279c5560d1ca0_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/159279c5560d1ca0_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
early_stopping_threshold: 1.0e-05
eval_max_new_tokens: 128
eval_steps: 161
eval_strategy: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/f356bf41-5032-425b-8da4-284285a6d4b3
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0004
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 161
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: null
micro_batch_size: 9
mlflow_experiment_name: /tmp/159279c5560d1ca0_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 161
saves_per_epoch: 0
sequence_len: 512
special_tokens:
pad_token: <|end_of_turn|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: .05000000
wandb_entity: null
wandb_mode: disabled
wandb_name: 0da85ac8-626a-4340-8d64-a50f9017e723
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 0da85ac8-626a-4340-8d64-a50f9017e723
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null
f356bf41-5032-425b-8da4-284285a6d4b3
This model is a fine-tuned version of Artples/L-MChat-7b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7995
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 9
- eval_batch_size: 9
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 36
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0015 | 1 | 1.1178 |
3.1327 | 0.2459 | 161 | 0.7824 |
3.0925 | 0.4918 | 322 | 0.7930 |
3.1385 | 0.7377 | 483 | 0.7995 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 1
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for mrferr3t/f356bf41-5032-425b-8da4-284285a6d4b3
Base model
Artples/L-MChat-7b