Bert_Fake_News_Classification

This model is a fine-tuned version of bert-base-cased on ErfanMoosaviMonazzah/fake-news-detection-dataset-English dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 3.0

Training results

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.0
  • Tokenizers 0.21.0
Downloads last month
45
Safetensors
Model size
108M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for mmosko/Bert_Fake_News_Classification

Finetuned
(2137)
this model

Dataset used to train mmosko/Bert_Fake_News_Classification