metadata
license: mit
datasets:
- SWE-Gym/SWE-Gym
language:
- en
base_model: all-hands/openhands-lm-32b-v0.1
pipeline_tag: text-generation
tags:
- agent
- coding
- mlx
library_name: mlx
mlx-community/openhands-lm-32b-v0.1-4bit
This model mlx-community/openhands-lm-32b-v0.1-4bit was converted to MLX format from all-hands/openhands-lm-32b-v0.1 using mlx-lm version 0.22.2.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/openhands-lm-32b-v0.1-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)