metadata
pipeline_tag: text-generation
inference:
parameters:
temperature: 0.2
top_p: 0.95
widget:
- text: 'def print_hello_world():'
example_title: Hello world
group: Python
datasets:
- bigcode/the-stack-v2-train
license: bigcode-openrail-m
library_name: transformers
tags:
- code
- mlx
base_model: bigcode/starcoder2-15b
model-index:
- name: starcoder2-15b
results:
- task:
type: text-generation
dataset:
name: CruxEval-I
type: cruxeval-i
metrics:
- type: pass@1
value: 48.1
- task:
type: text-generation
dataset:
name: DS-1000
type: ds-1000
metrics:
- type: pass@1
value: 33.8
- task:
type: text-generation
dataset:
name: GSM8K (PAL)
type: gsm8k-pal
metrics:
- type: accuracy
value: 65.1
- task:
type: text-generation
dataset:
name: HumanEval+
type: humanevalplus
metrics:
- type: pass@1
value: 37.8
- task:
type: text-generation
dataset:
name: HumanEval
type: humaneval
metrics:
- type: pass@1
value: 46.3
- task:
type: text-generation
dataset:
name: RepoBench-v1.1
type: repobench-v1.1
metrics:
- type: edit-smiliarity
value: 74.08
mlx-community/bigcode-starcoder2-15b-8bit
The Model mlx-community/bigcode-starcoder2-15b-8bit was converted to MLX format from bigcode/starcoder2-15b using mlx-lm version 0.21.1 by Focused.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/bigcode-starcoder2-15b-8bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
Focused is a technology company at the forefront of AI-driven development, empowering organizations to unlock the full potential of artificial intelligence. From integrating innovative models into existing systems to building scalable, modern AI infrastructures, we specialize in delivering tailored, incremental solutions that meet you where you are. Curious how we can help with your AI next project? Get in Touch