|
--- |
|
library_name: transformers |
|
license: llama3.1 |
|
base_model: meta-llama/Meta-Llama-3.1-8B |
|
tags: |
|
- llama-factory |
|
- full |
|
- generated_from_trainer |
|
model-index: |
|
- name: oh_scale_x.125_compute_equal |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# oh_scale_x.125_compute_equal |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) on the mlfoundations-dev/oh-dcft-v1.3_no-curation_gpt-4o-mini_scale_0.125x dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.0839 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 512 |
|
- total_eval_batch_size: 64 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: constant |
|
- num_epochs: 89.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-------:|:----:|:---------------:| |
|
| 0.8588 | 0.9973 | 47 | 0.8431 | |
|
| 0.7685 | 1.9947 | 94 | 0.8078 | |
|
| 0.7039 | 2.9920 | 141 | 0.8061 | |
|
| 0.6431 | 3.9894 | 188 | 0.8146 | |
|
| 0.6047 | 4.9867 | 235 | 0.8365 | |
|
| 0.5574 | 5.9841 | 282 | 0.8701 | |
|
| 0.5092 | 6.9814 | 329 | 0.8984 | |
|
| 0.4572 | 8.0 | 377 | 0.9556 | |
|
| 0.4085 | 8.9973 | 424 | 1.0193 | |
|
| 0.349 | 9.9947 | 471 | 1.1014 | |
|
| 0.2917 | 10.9920 | 518 | 1.1841 | |
|
| 0.2371 | 11.9894 | 565 | 1.2766 | |
|
| 0.1947 | 12.9867 | 612 | 1.4154 | |
|
| 0.1574 | 13.9841 | 659 | 1.5165 | |
|
| 0.1248 | 14.9814 | 706 | 1.6125 | |
|
| 0.0949 | 16.0 | 754 | 1.7871 | |
|
| 0.072 | 16.9973 | 801 | 1.8431 | |
|
| 0.0557 | 17.9947 | 848 | 1.8931 | |
|
| 0.0476 | 18.9920 | 895 | 1.8831 | |
|
| 0.0389 | 19.9894 | 942 | 2.0265 | |
|
| 0.0326 | 20.9867 | 989 | 2.0191 | |
|
| 0.0289 | 21.9841 | 1036 | 2.0776 | |
|
| 0.0241 | 22.9814 | 1083 | 2.1365 | |
|
| 0.0224 | 24.0 | 1131 | 2.1633 | |
|
| 0.0186 | 24.9973 | 1178 | 2.1493 | |
|
| 0.0168 | 25.9947 | 1225 | 2.1881 | |
|
| 0.0165 | 26.9920 | 1272 | 2.2118 | |
|
| 0.0149 | 27.9894 | 1319 | 2.1890 | |
|
| 0.0138 | 28.9867 | 1366 | 2.2228 | |
|
| 0.0124 | 29.9841 | 1413 | 2.2381 | |
|
| 0.0099 | 30.9814 | 1460 | 2.2632 | |
|
| 0.0082 | 32.0 | 1508 | 2.3145 | |
|
| 0.0074 | 32.9973 | 1555 | 2.3310 | |
|
| 0.0063 | 33.9947 | 1602 | 2.2894 | |
|
| 0.0058 | 34.9920 | 1649 | 2.3082 | |
|
| 0.0051 | 35.9894 | 1696 | 2.3288 | |
|
| 0.0048 | 36.9867 | 1743 | 2.3887 | |
|
| 0.0047 | 37.9841 | 1790 | 2.3353 | |
|
| 0.0046 | 38.9814 | 1837 | 2.3314 | |
|
| 0.0046 | 40.0 | 1885 | 2.3529 | |
|
| 0.0046 | 40.9973 | 1932 | 2.2960 | |
|
| 0.0044 | 41.9947 | 1979 | 2.2470 | |
|
| 0.0046 | 42.9920 | 2026 | 2.2445 | |
|
| 0.0047 | 43.9894 | 2073 | 2.1857 | |
|
| 0.0046 | 44.9867 | 2120 | 2.2821 | |
|
| 0.0044 | 45.9841 | 2167 | 2.1947 | |
|
| 0.0046 | 46.9814 | 2214 | 2.2448 | |
|
| 0.0046 | 48.0 | 2262 | 2.2752 | |
|
| 0.0045 | 48.9973 | 2309 | 2.1920 | |
|
| 0.0043 | 49.9947 | 2356 | 2.2769 | |
|
| 0.0046 | 50.9920 | 2403 | 2.1450 | |
|
| 0.0047 | 51.9894 | 2450 | 2.1438 | |
|
| 0.0045 | 52.9867 | 2497 | 2.2089 | |
|
| 0.0046 | 53.9841 | 2544 | 2.1234 | |
|
| 0.0043 | 54.9814 | 2591 | 2.0988 | |
|
| 0.0042 | 56.0 | 2639 | 2.2262 | |
|
| 0.0041 | 56.9973 | 2686 | 2.1830 | |
|
| 0.0043 | 57.9947 | 2733 | 2.0565 | |
|
| 0.0044 | 58.9920 | 2780 | 2.1350 | |
|
| 0.0042 | 59.9894 | 2827 | 2.1475 | |
|
| 0.004 | 60.9867 | 2874 | 2.1590 | |
|
| 0.0039 | 61.9841 | 2921 | 2.1752 | |
|
| 0.0043 | 62.9814 | 2968 | 2.0756 | |
|
| 0.0038 | 64.0 | 3016 | 2.1629 | |
|
| 0.0038 | 64.9973 | 3063 | 2.1522 | |
|
| 0.0036 | 65.9947 | 3110 | 2.1449 | |
|
| 0.0035 | 66.9920 | 3157 | 2.1889 | |
|
| 0.0035 | 67.9894 | 3204 | 2.0248 | |
|
| 0.0034 | 68.9867 | 3251 | 2.1538 | |
|
| 0.0034 | 69.9841 | 3298 | 2.1202 | |
|
| 0.0035 | 70.9814 | 3345 | 2.0326 | |
|
| 0.0035 | 72.0 | 3393 | 2.1360 | |
|
| 0.0036 | 72.9973 | 3440 | 2.1404 | |
|
| 0.0036 | 73.9947 | 3487 | 2.0651 | |
|
| 0.0035 | 74.9920 | 3534 | 2.0982 | |
|
| 0.0033 | 75.9894 | 3581 | 2.1032 | |
|
| 0.0034 | 76.9867 | 3628 | 2.1028 | |
|
| 0.0032 | 77.9841 | 3675 | 2.1282 | |
|
| 0.0031 | 78.9814 | 3722 | 2.0912 | |
|
| 0.0035 | 80.0 | 3770 | 2.0766 | |
|
| 0.0033 | 80.9973 | 3817 | 2.0286 | |
|
| 0.0033 | 81.9947 | 3864 | 2.0421 | |
|
| 0.0034 | 82.9920 | 3911 | 2.1121 | |
|
| 0.0033 | 83.9894 | 3958 | 2.0832 | |
|
| 0.0033 | 84.9867 | 4005 | 2.0629 | |
|
| 0.0034 | 85.9841 | 4052 | 2.1398 | |
|
| 0.0032 | 86.9814 | 4099 | 2.1203 | |
|
| 0.0032 | 88.0 | 4147 | 2.1025 | |
|
| 0.0035 | 88.7639 | 4183 | 2.0839 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.1 |
|
- Pytorch 2.3.0 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|