miosipof's picture
End of training
aa22f95 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - balbus-classifier
metrics:
  - accuracy
model-index:
  - name: miosipof/whisper-small-ft-balbus-sep28k-v1.2
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: Apple dataset
          type: balbus-classifier
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8082105922908179

miosipof/whisper-small-ft-balbus-sep28k-v1.2

This model is a fine-tuned version of openai/whisper-small on the Apple dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1107
  • Accuracy: 0.8082

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.5
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1709 0.1253 50 0.1690 0.5650
0.1669 0.2506 100 0.1630 0.6369
0.1542 0.3759 150 0.1439 0.7131
0.1283 0.5013 200 0.1214 0.7802
0.1158 0.6266 250 0.1171 0.7935
0.1059 0.7519 300 0.1131 0.7985
0.1142 0.8772 350 0.1102 0.8081
0.104 1.0025 400 0.1112 0.8068
0.0924 1.1278 450 0.1114 0.8087
0.0959 1.2531 500 0.1107 0.8082

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.2.0
  • Datasets 3.2.0
  • Tokenizers 0.20.3