metadata
language:
- en
Conversation flow text classification
This a ONNX quantized model and is fined-tuned version of nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large. The original model can be found here
This model identifies common events and patterns within the conversation flow. Such events include an apology, where the agent acknowledges a mistake, and a complaint, when a user expresses dissatisfaction.
This model should be used only for agent dialogs.
Usage
Installation
pip install tokenizers
pip install onnxruntime
git clone https://huggingface.co/minuva/MiniLMv2-agentflow-v2-onnx
Run the Model
import os
import numpy as np
import json
from tokenizers import Tokenizer
from onnxruntime import InferenceSession
model_name = "minuva/MiniLMv2-agentflow-v2-onnx"
tokenizer = Tokenizer.from_pretrained(model_name)
tokenizer.enable_padding(
pad_token="<pad>",
pad_id=1,
)
tokenizer.enable_truncation(max_length=256)
batch_size = 16
texts = ["thats my mistake"]
outputs = []
model = InferenceSession("MiniLMv2-agentflow-v2-onnx/model_optimized_quantized.onnx", providers=['CPUExecutionProvider'])
with open(os.path.join("MiniLMv2-agentflow-v2-onnx", "config.json"), "r") as f:
config = json.load(f)
output_names = [output.name for output in model.get_outputs()]
input_names = [input.name for input in model.get_inputs()]
for subtexts in np.array_split(np.array(texts), len(texts) // batch_size + 1):
encodings = tokenizer.encode_batch(list(subtexts))
inputs = {
"input_ids": np.vstack(
[encoding.ids for encoding in encodings],
),
"attention_mask": np.vstack(
[encoding.attention_mask for encoding in encodings],
),
"token_type_ids": np.vstack(
[encoding.type_ids for encoding in encodings],
),
}
for input_name in input_names:
if input_name not in inputs:
raise ValueError(f"Input name {input_name} not found in inputs")
inputs = {input_name: inputs[input_name] for input_name in input_names}
output = np.squeeze(
np.stack(
model.run(output_names=output_names, input_feed=inputs)
),
axis=0,
)
outputs.append(output)
outputs = np.concatenate(outputs, axis=0)
scores = 1 / (1 + np.exp(-outputs))
results = []
for item in scores:
labels = []
scores = []
for idx, s in enumerate(item):
labels.append(config["id2label"][str(idx)])
scores.append(float(s))
results.append({"labels": labels, "scores": scores})
res = []
for result in results:
joined = list(zip(result['labels'], result['scores']))
max_score = max(joined, key=lambda x: x[1])
res.append(max_score)
res
# [('agent_apology_error_mistake', 0.9991708993911743)]
Categories Explanation
Click to expand!
- OTHER: Responses or actions by the agent that do not fit into the predefined categories or are outside the scope of the specific interactions listed.
- agent_apology_error_mistake: When the agent acknowledges an error or mistake in the information provided or in the handling of the request.
- agent_apology_unsatisfactory: The agent expresses an apology for providing an unsatisfactory response or for any dissatisfaction experienced by the user.
- agent_didnt_understand: Indicates that the agent did not understand the user's request or question.
- agent_limited_capabilities: The agent communicates its limitations in addressing certain requests or providing certain types of information.
- agent_refuses_answer: When the agent explicitly refuses to answer a question or fulfill a request, due to policy restrictions or ethical considerations.
- image_limitations": The agent points out limitations related to handling or interpreting images.
- no_information_doesnt_know": The agent indicates that it has no information available or does not know the answer to the user's question.
- success_and_followup_assistance": The agent successfully provides the requested information or service and offers further assistance or follow-up actions if needed.
Metrics in our private test dataset
Model (params) | Loss | Accuracy | F1 |
---|---|---|---|
minuva/MiniLMv2-agentflow-v2 (33M) | 0.1462 | 0.9773 | 0.9774 |
minuva/MiniLMv2-agentflow-v2-onnx (33M) | - | 0.97394 | 0.97392 |
Deployment
Check our repository to see how to easily deploy this (quantized) model in a serverless environment with fast CPU inference and light resource utilization.