|
--- |
|
library_name: transformers |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: bert-reg-biencoder-mse |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-reg-biencoder-mse |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0817 |
|
- Mse: 0.0812 |
|
- Mae: 0.2278 |
|
- Pearson Corr: 0.2835 |
|
- Spearman Corr: 0.2331 |
|
- Cosine Sim: 0.9097 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 7 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mse | Mae | Pearson Corr | Spearman Corr | Cosine Sim | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------------:|:-------------:|:----------:| |
|
| 0.1219 | 1.0 | 21 | 0.1124 | 0.1117 | 0.2560 | 0.1406 | 0.0993 | 0.9055 | |
|
| 0.1017 | 2.0 | 42 | 0.0838 | 0.0833 | 0.2248 | 0.1312 | 0.1239 | 0.9045 | |
|
| 0.0872 | 3.0 | 63 | 0.0778 | 0.0775 | 0.2205 | 0.2520 | 0.1374 | 0.9097 | |
|
| 0.0694 | 4.0 | 84 | 0.0860 | 0.0856 | 0.2328 | 0.1923 | 0.1456 | 0.9037 | |
|
| 0.0533 | 5.0 | 105 | 0.0958 | 0.0951 | 0.2418 | 0.3089 | 0.2252 | 0.9132 | |
|
| 0.0478 | 6.0 | 126 | 0.0782 | 0.0778 | 0.2216 | 0.2913 | 0.2325 | 0.9096 | |
|
| 0.0385 | 7.0 | 147 | 0.0817 | 0.0812 | 0.2278 | 0.2835 | 0.2331 | 0.9097 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.1 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.0 |
|
|