File size: 20,356 Bytes
e57818e
 
 
 
 
 
 
 
 
 
 
 
755495b
 
 
 
 
 
 
 
 
e57818e
 
 
 
 
 
 
 
 
 
 
 
 
755495b
e57818e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
755495b
 
 
 
 
 
e57818e
 
 
 
 
 
755495b
e57818e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
755495b
e57818e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
755495b
e57818e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
755495b
 
 
 
 
 
 
 
 
 
 
e07d8d8
e57818e
 
 
 
 
 
755495b
e07d8d8
755495b
 
e57818e
 
 
 
 
 
 
 
e07d8d8
e57818e
 
e07d8d8
 
e57818e
 
 
 
 
 
 
e07d8d8
 
 
 
e57818e
 
 
 
 
 
 
755495b
e57818e
 
 
 
 
 
 
 
 
755495b
 
 
 
 
e57818e
 
 
 
 
 
 
 
 
 
 
 
755495b
 
 
e57818e
 
 
755495b
e57818e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
755495b
 
 
 
e57818e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
755495b
e57818e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e07d8d8
e57818e
755495b
e57818e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 시카 클리닉 비듬제거 두피 샴푸 1000ml  (#M)뷰티>헤어/바디/미용기기>헤어케어>샴푸 CJmall > 뷰티 > 헤어/바디/미용기기
    > 헤어케어 > 샴푸
- text: 더바디샵 진저 샴푸 모발 관리 400ML 3 MinSellAmount (#M)바디/헤어>헤어케어>샴푸/린스 Gmarket > 뷰티
    > 바디/헤어 > 헤어케어 > 샴푸/린스
- text: 리엔 자윤 모근강화 지성 샴푸 500ml × 2 (#M)쿠팡 홈>생활용품>헤어/바디/세안>샴푸/린스>샴푸>한방샴푸 Coupang >
    뷰티 > 헤어 > 샴푸 > 한방샴푸
- text: '[댄트롤] 딥 클린 박하 솔트 샴푸 820ml 딥 클린 박하 솔트 샴푸 820ml (#M)홈>화장품/미용>헤어케어>샴푸 Naverstore
    > 화장품/미용 > 헤어케어 > 샴푸'
- text: 쿤달  클렌징 지성샴푸 500ml ★신향★일랑일랑 (#M)홈>헤어>샴푸 Naverstore > 화장품/미용 > 헤어케어 > 샴푸
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.8367556468172485
      name: Accuracy
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 4 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3     | <ul><li>'트리플에스 대용량 약산성 탈모샴푸 1350ml/세트구성 탈모샴푸 580ml+580ml+무료증정(5ml 10개) 쇼킹딜 홈>뷰티>헤어>샴푸/린스/기능성;11st>뷰티>헤어>샴푸/린스/기능성;(#M)11st>헤어케어>샴푸>일반 11st > 뷰티 > 헤어케어 > 샴푸'</li><li>'닥터방기원 랩샴푸 탈모샴푸 1L x 3개  (#M)헤어케어>샴푸>샴푸바 AD > 11st > 뷰티 > 헤어케어 > 샴푸 > 샴푸바'</li><li>'[메디올]탈모완화 우디향 샴푸/두피청정 퓨리파잉 샴푸/트리트먼트/헤어케어 15.퓨리파잉 샴푸 480ml 2개_+블루퓨리파잉샴푸 100ml 1개+시트 트먼 50ml 1개 (#M)헤어케어>샴푸>샴푸바 11st Hour Event > 패션/뷰티 > 뷰티 > 헤어 > 샴푸/린스/기능성'</li></ul>                    |
| 0     | <ul><li>'[본사직영] 떡진머리 드라이 파우더  (#M)위메프 > 생활·주방용품 > 바디/헤어 > 바디로션/핸드/풋 > 바디보습 위메프 > 뷰티 > 바디/헤어 > 바디로션/핸드/풋 > 바디보습'</li><li>'[코랩][3개세트] 코랩 비건 헤어 드라이샴푸 200ml (6종 택1, 교차선택 가능) 파라다이스_프레쉬_트로피컬 (#M)11st>헤어케어>샴푸>일반 11st > 뷰티 > 헤어케어 > 샴푸'</li><li>'르네휘테르 나뚜리아 인비저블 드라이 샴푸 200ml  (#M)화장품/미용>헤어케어>샴푸 AD > traverse > Naverstore > 화장품/미용 > 헤어케어 > 샴푸 > 드라이샴푸'</li></ul>                                                                                   |
| 2     | <ul><li>'미쟝센 퍼펙트세럼 샴푸/컨디셔너 680ml 2입 모음 09__슈퍼리치 샴푸1입+컨디셔너1입 ssg > 뷰티 > 헤어/바디 > 헤어케어 > 헤어트리트먼트;ssg > 뷰티 > 헤어/바디 > 헤어케어 > 샴푸;ssg > 뷰티 > 헤어/바디 > 헤어케어 ssg > 뷰티 > 헤어/바디 > 헤어케어 > 린스/컨디셔너'</li><li>'[대용량 퍼퓸] 수오가닉 대용량 약산성 아로마 퍼퓸 샴푸워시 1000ml 5개 옵션 5개 선택 해주세요_샴푸워시 오스만투스 1000ml (#M)화장품/미용>헤어케어>샴푸 AD > Naverstore > 화장품/미용 > 헤어케어 > 샴푸 > 약산성샴푸'</li><li>'발샴푸 300ml 공식수입정품 발냄새 발전용  (#M)SSG.COM/헤어/바디/바디케어/풋케어 ssg > 뷰티 > 헤어/바디 > 바디케어 > 풋케어'</li></ul> |
| 1     | <ul><li>'삼쩜오 저탄소 샴푸바만들기 (교육용) 100g 1개분량 샴푸바 키트 1인 키트 파란색_레몬그라스 (#M)화장품/미용>헤어케어>샴푸 AD > traverse > Naverstore > 화장품/미용 > 헤어케어 > 샴푸 > 샴푸바'</li><li>'오디샤 저자극 약산성 천연 다시마추출물 샴푸바 더퓨어 120g  (#M)화장품/미용>헤어케어>샴푸 Naverstore > 화장품/미용 > 헤어케어 > 샴푸 > 샴푸바'</li><li>'솝퓨리 커스텀 세트 노세범 샴푸바_안티로스 샴푸바_네버드라이 페이셜&바디바 (#M)화장품/미용>헤어케어>샴푸 AD > Naverstore > 화장품/미용 > 헤어케어 > 샴푸 > 샴푸바'</li></ul>                                                                        |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.8368   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_top_bt13_3_test_flat")
# Run inference
preds = model("쿤달 딥 클렌징 지성샴푸 500ml ★신향★일랑일랑 (#M)홈>헤어>샴푸 Naverstore > 화장품/미용 > 헤어케어 > 샴푸")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 13  | 21.665 | 44  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 50                    |
| 1     | 50                    |
| 2     | 50                    |
| 3     | 50                    |

### Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 100
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0032  | 1    | 0.4592        | -               |
| 0.1597  | 50   | 0.3966        | -               |
| 0.3195  | 100  | 0.3419        | -               |
| 0.4792  | 150  | 0.2777        | -               |
| 0.6390  | 200  | 0.2014        | -               |
| 0.7987  | 250  | 0.1159        | -               |
| 0.9585  | 300  | 0.06          | -               |
| 1.1182  | 350  | 0.0152        | -               |
| 1.2780  | 400  | 0.0032        | -               |
| 1.4377  | 450  | 0.0016        | -               |
| 1.5974  | 500  | 0.0009        | -               |
| 1.7572  | 550  | 0.0005        | -               |
| 1.9169  | 600  | 0.0004        | -               |
| 2.0767  | 650  | 0.0002        | -               |
| 2.2364  | 700  | 0.0002        | -               |
| 2.3962  | 750  | 0.0001        | -               |
| 2.5559  | 800  | 0.0001        | -               |
| 2.7157  | 850  | 0.0001        | -               |
| 2.8754  | 900  | 0.0001        | -               |
| 3.0351  | 950  | 0.0           | -               |
| 3.1949  | 1000 | 0.0           | -               |
| 3.3546  | 1050 | 0.0           | -               |
| 3.5144  | 1100 | 0.0           | -               |
| 3.6741  | 1150 | 0.0           | -               |
| 3.8339  | 1200 | 0.0           | -               |
| 3.9936  | 1250 | 0.0           | -               |
| 4.1534  | 1300 | 0.0           | -               |
| 4.3131  | 1350 | 0.0           | -               |
| 4.4728  | 1400 | 0.0           | -               |
| 4.6326  | 1450 | 0.0           | -               |
| 4.7923  | 1500 | 0.0           | -               |
| 4.9521  | 1550 | 0.0           | -               |
| 5.1118  | 1600 | 0.0           | -               |
| 5.2716  | 1650 | 0.0           | -               |
| 5.4313  | 1700 | 0.0           | -               |
| 5.5911  | 1750 | 0.0           | -               |
| 5.7508  | 1800 | 0.0           | -               |
| 5.9105  | 1850 | 0.0           | -               |
| 6.0703  | 1900 | 0.0           | -               |
| 6.2300  | 1950 | 0.0           | -               |
| 6.3898  | 2000 | 0.0           | -               |
| 6.5495  | 2050 | 0.0           | -               |
| 6.7093  | 2100 | 0.0           | -               |
| 6.8690  | 2150 | 0.0           | -               |
| 7.0288  | 2200 | 0.0           | -               |
| 7.1885  | 2250 | 0.0           | -               |
| 7.3482  | 2300 | 0.0           | -               |
| 7.5080  | 2350 | 0.0           | -               |
| 7.6677  | 2400 | 0.0           | -               |
| 7.8275  | 2450 | 0.0           | -               |
| 7.9872  | 2500 | 0.0           | -               |
| 8.1470  | 2550 | 0.0           | -               |
| 8.3067  | 2600 | 0.0           | -               |
| 8.4665  | 2650 | 0.0           | -               |
| 8.6262  | 2700 | 0.0           | -               |
| 8.7859  | 2750 | 0.0           | -               |
| 8.9457  | 2800 | 0.0           | -               |
| 9.1054  | 2850 | 0.0           | -               |
| 9.2652  | 2900 | 0.0           | -               |
| 9.4249  | 2950 | 0.0           | -               |
| 9.5847  | 3000 | 0.0           | -               |
| 9.7444  | 3050 | 0.0           | -               |
| 9.9042  | 3100 | 0.0           | -               |
| 10.0639 | 3150 | 0.0           | -               |
| 10.2236 | 3200 | 0.0           | -               |
| 10.3834 | 3250 | 0.0           | -               |
| 10.5431 | 3300 | 0.0           | -               |
| 10.7029 | 3350 | 0.0           | -               |
| 10.8626 | 3400 | 0.0           | -               |
| 11.0224 | 3450 | 0.0           | -               |
| 11.1821 | 3500 | 0.0           | -               |
| 11.3419 | 3550 | 0.0           | -               |
| 11.5016 | 3600 | 0.0           | -               |
| 11.6613 | 3650 | 0.0           | -               |
| 11.8211 | 3700 | 0.0           | -               |
| 11.9808 | 3750 | 0.0           | -               |
| 12.1406 | 3800 | 0.0           | -               |
| 12.3003 | 3850 | 0.0           | -               |
| 12.4601 | 3900 | 0.0           | -               |
| 12.6198 | 3950 | 0.0           | -               |
| 12.7796 | 4000 | 0.0017        | -               |
| 12.9393 | 4050 | 0.0052        | -               |
| 13.0990 | 4100 | 0.0005        | -               |
| 13.2588 | 4150 | 0.0           | -               |
| 13.4185 | 4200 | 0.0           | -               |
| 13.5783 | 4250 | 0.0           | -               |
| 13.7380 | 4300 | 0.0002        | -               |
| 13.8978 | 4350 | 0.0           | -               |
| 14.0575 | 4400 | 0.0           | -               |
| 14.2173 | 4450 | 0.0           | -               |
| 14.3770 | 4500 | 0.0           | -               |
| 14.5367 | 4550 | 0.0           | -               |
| 14.6965 | 4600 | 0.0           | -               |
| 14.8562 | 4650 | 0.0           | -               |
| 15.0160 | 4700 | 0.0           | -               |
| 15.1757 | 4750 | 0.0           | -               |
| 15.3355 | 4800 | 0.0           | -               |
| 15.4952 | 4850 | 0.0           | -               |
| 15.6550 | 4900 | 0.0           | -               |
| 15.8147 | 4950 | 0.0           | -               |
| 15.9744 | 5000 | 0.0           | -               |
| 16.1342 | 5050 | 0.0           | -               |
| 16.2939 | 5100 | 0.0           | -               |
| 16.4537 | 5150 | 0.0           | -               |
| 16.6134 | 5200 | 0.0           | -               |
| 16.7732 | 5250 | 0.0           | -               |
| 16.9329 | 5300 | 0.0           | -               |
| 17.0927 | 5350 | 0.0           | -               |
| 17.2524 | 5400 | 0.0           | -               |
| 17.4121 | 5450 | 0.0           | -               |
| 17.5719 | 5500 | 0.0           | -               |
| 17.7316 | 5550 | 0.0           | -               |
| 17.8914 | 5600 | 0.0           | -               |
| 18.0511 | 5650 | 0.0           | -               |
| 18.2109 | 5700 | 0.0           | -               |
| 18.3706 | 5750 | 0.0           | -               |
| 18.5304 | 5800 | 0.0           | -               |
| 18.6901 | 5850 | 0.0           | -               |
| 18.8498 | 5900 | 0.0           | -               |
| 19.0096 | 5950 | 0.0           | -               |
| 19.1693 | 6000 | 0.0           | -               |
| 19.3291 | 6050 | 0.0           | -               |
| 19.4888 | 6100 | 0.0           | -               |
| 19.6486 | 6150 | 0.0           | -               |
| 19.8083 | 6200 | 0.0           | -               |
| 19.9681 | 6250 | 0.0           | -               |
| 20.1278 | 6300 | 0.0           | -               |
| 20.2875 | 6350 | 0.0           | -               |
| 20.4473 | 6400 | 0.0           | -               |
| 20.6070 | 6450 | 0.0           | -               |
| 20.7668 | 6500 | 0.0           | -               |
| 20.9265 | 6550 | 0.0           | -               |
| 21.0863 | 6600 | 0.0           | -               |
| 21.2460 | 6650 | 0.0           | -               |
| 21.4058 | 6700 | 0.0           | -               |
| 21.5655 | 6750 | 0.0           | -               |
| 21.7252 | 6800 | 0.0           | -               |
| 21.8850 | 6850 | 0.0           | -               |
| 22.0447 | 6900 | 0.0           | -               |
| 22.2045 | 6950 | 0.0           | -               |
| 22.3642 | 7000 | 0.0           | -               |
| 22.5240 | 7050 | 0.0           | -               |
| 22.6837 | 7100 | 0.0           | -               |
| 22.8435 | 7150 | 0.0           | -               |
| 23.0032 | 7200 | 0.0           | -               |
| 23.1629 | 7250 | 0.0           | -               |
| 23.3227 | 7300 | 0.0           | -               |
| 23.4824 | 7350 | 0.0           | -               |
| 23.6422 | 7400 | 0.0           | -               |
| 23.8019 | 7450 | 0.0           | -               |
| 23.9617 | 7500 | 0.0           | -               |
| 24.1214 | 7550 | 0.0           | -               |
| 24.2812 | 7600 | 0.0           | -               |
| 24.4409 | 7650 | 0.0           | -               |
| 24.6006 | 7700 | 0.0           | -               |
| 24.7604 | 7750 | 0.0           | -               |
| 24.9201 | 7800 | 0.0           | -               |
| 25.0799 | 7850 | 0.0           | -               |
| 25.2396 | 7900 | 0.0           | -               |
| 25.3994 | 7950 | 0.0           | -               |
| 25.5591 | 8000 | 0.0           | -               |
| 25.7188 | 8050 | 0.0           | -               |
| 25.8786 | 8100 | 0.0           | -               |
| 26.0383 | 8150 | 0.0           | -               |
| 26.1981 | 8200 | 0.0           | -               |
| 26.3578 | 8250 | 0.0           | -               |
| 26.5176 | 8300 | 0.0           | -               |
| 26.6773 | 8350 | 0.0           | -               |
| 26.8371 | 8400 | 0.0           | -               |
| 26.9968 | 8450 | 0.0           | -               |
| 27.1565 | 8500 | 0.0           | -               |
| 27.3163 | 8550 | 0.0           | -               |
| 27.4760 | 8600 | 0.0           | -               |
| 27.6358 | 8650 | 0.0           | -               |
| 27.7955 | 8700 | 0.0           | -               |
| 27.9553 | 8750 | 0.0           | -               |
| 28.1150 | 8800 | 0.0           | -               |
| 28.2748 | 8850 | 0.0           | -               |
| 28.4345 | 8900 | 0.0           | -               |
| 28.5942 | 8950 | 0.0           | -               |
| 28.7540 | 9000 | 0.0           | -               |
| 28.9137 | 9050 | 0.0           | -               |
| 29.0735 | 9100 | 0.0001        | -               |
| 29.2332 | 9150 | 0.0           | -               |
| 29.3930 | 9200 | 0.0           | -               |
| 29.5527 | 9250 | 0.0           | -               |
| 29.7125 | 9300 | 0.0           | -               |
| 29.8722 | 9350 | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->