File size: 8,748 Bytes
24cc1a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 베리네이처 유기농 이유식 큐브 야채 토핑 초기 다진 단호박 45g 유기농_★단품 후기 90g_05.다진 적양배추 출산/육아 > 이유식
> 이유식재료
- text: 처음요리 이유식 유아식 밀키트 세트 초기 중기 후기 완료기 유아식 식단세트 다진야채큐브 05.진죽1_10팩 매일한우식단 1번_베이직(쌀/육수
제외) 출산/육아 > 이유식 > 이유식재료
- text: 루솔 튼튼 어린이 볶음밥 8가지맛 (1팩) LU0723.버섯볶음밥 출산/육아 > 이유식 > 가공이유식
- text: 프레벨롱 국산과일 퓨레 6팩세트 아기퓨레 아기간식 블루베리 2팩+비트 2팩+고구마 2팩 출산/육아 > 이유식 > 가공이유식
- text: 알렉스앤필 6종 스웨덴 유기농 아기 이유식 과일퓨레 당근&망고 출산/육아 > 이유식 > 가공이유식
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: mini1013/master_domain
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 1.0
name: Accuracy
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0 | <ul><li>'이유식 야채 큐브 다진야채 적양배추_유아기 출산/육아 > 이유식 > 이유식재료'</li><li>'오뚜기 어린이카레 80g 출산/육아 > 이유식 > 이유식재료'</li><li>'라온킴 다진야채 매일 만드는 이유식큐브 토핑 초기 중기 후기 완료 연근(껍질제거)_중기 출산/육아 > 이유식 > 이유식재료'</li></ul> |
| 0.0 | <ul><li>'[1+1 ] 아기퓨레 과일 무럭무럭 키즈죽 간식 중기 후기 파우치 실온이유식 12개월 단호박 1박스 + 바나나단호박 1박스 출산/육아 > 이유식 > 가공이유식'</li><li>'푸드트리 아기카레 덮밥소스 돌 두돌 아기반찬 유아반찬 유아식 소고기커리 아기덮밥 소스) A07 소고기 순한짜장 출산/육아 > 이유식 > 가공이유식'</li><li>'퓨어잇 아이김 3+3팩 골라담기 파래김/김과자 오가닉 아이김자반 3봉_유기농 김100% 3팩 출산/육아 > 이유식 > 가공이유식'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 1.0 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bc25")
# Run inference
preds = model("알렉스앤필 6종 스웨덴 유기농 아기 이유식 과일퓨레 당근&망고 출산/육아 > 이유식 > 가공이유식")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 8 | 15.4286 | 23 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 70 |
| 1.0 | 70 |
### Training Hyperparameters
- batch_size: (256, 256)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 50
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0357 | 1 | 0.4786 | - |
| 1.7857 | 50 | 0.2484 | - |
| 3.5714 | 100 | 0.0 | - |
| 5.3571 | 150 | 0.0 | - |
| 7.1429 | 200 | 0.0 | - |
| 8.9286 | 250 | 0.0 | - |
| 10.7143 | 300 | 0.0 | - |
| 12.5 | 350 | 0.0 | - |
| 14.2857 | 400 | 0.0 | - |
| 16.0714 | 450 | 0.0 | - |
| 17.8571 | 500 | 0.0 | - |
| 19.6429 | 550 | 0.0 | - |
| 21.4286 | 600 | 0.0 | - |
| 23.2143 | 650 | 0.0 | - |
| 25.0 | 700 | 0.0 | - |
| 26.7857 | 750 | 0.0 | - |
| 28.5714 | 800 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |