mini1013 commited on
Commit
24cc1a4
·
verified ·
1 Parent(s): 0be5674

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: 베리네이처 유기농 이유식 큐브 야채 토핑 초기 다진 단호박 45g 유기농_★단품 후기 90g_05.다진 적양배추 출산/육아 > 이유식
9
+ > 이유식재료
10
+ - text: 처음요리 이유식 유아식 밀키트 세트 초기 중기 후기 완료기 유아식 식단세트 다진야채큐브 05.진죽1_10팩 매일한우식단 1번_베이직(쌀/육수
11
+ 제외) 출산/육아 > 이유식 > 이유식재료
12
+ - text: 루솔 튼튼 어린이 볶음밥 8가지맛 (1팩) LU0723.버섯볶음밥 출산/육아 > 이유식 > 가공이유식
13
+ - text: 프레벨롱 국산과일 퓨레 6팩세트 아기퓨레 아기간식 블루베리 2팩+비트 2팩+고구마 2팩 출산/육아 > 이유식 > 가공이유식
14
+ - text: 알렉스앤필 6종 스웨덴 유기농 아기 이유식 과일퓨레 당근&망고 출산/육아 > 이유식 > 가공이유식
15
+ metrics:
16
+ - accuracy
17
+ pipeline_tag: text-classification
18
+ library_name: setfit
19
+ inference: true
20
+ base_model: mini1013/master_domain
21
+ model-index:
22
+ - name: SetFit with mini1013/master_domain
23
+ results:
24
+ - task:
25
+ type: text-classification
26
+ name: Text Classification
27
+ dataset:
28
+ name: Unknown
29
+ type: unknown
30
+ split: test
31
+ metrics:
32
+ - type: accuracy
33
+ value: 1.0
34
+ name: Accuracy
35
+ ---
36
+
37
+ # SetFit with mini1013/master_domain
38
+
39
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
40
+
41
+ The model has been trained using an efficient few-shot learning technique that involves:
42
+
43
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
44
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
45
+
46
+ ## Model Details
47
+
48
+ ### Model Description
49
+ - **Model Type:** SetFit
50
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
51
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
52
+ - **Maximum Sequence Length:** 512 tokens
53
+ - **Number of Classes:** 2 classes
54
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
55
+ <!-- - **Language:** Unknown -->
56
+ <!-- - **License:** Unknown -->
57
+
58
+ ### Model Sources
59
+
60
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
61
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
62
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
63
+
64
+ ### Model Labels
65
+ | Label | Examples |
66
+ |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
67
+ | 1.0 | <ul><li>'이유식 야채 큐브 다진야채 적양배추_유아기 출산/육아 > 이유식 > 이유식재료'</li><li>'오뚜기 어린이카레 80g 출산/육아 > 이유식 > 이유식재료'</li><li>'라온킴 다진야채 매일 만드는 이유식큐브 토핑 초기 중기 후기 완료 연근(껍질제거)_중기 출산/육아 > 이유식 > 이유식재료'</li></ul> |
68
+ | 0.0 | <ul><li>'[1+1 ] 아기퓨레 과일 무럭무럭 키즈죽 간식 중기 후기 파우치 실온이유식 12개월 단호박 1박스 + 바나나단호박 1박스 출산/육아 > 이유식 > 가공이유식'</li><li>'푸드트리 아기카레 덮밥소스 돌 두돌 아기반찬 유아반찬 유아식 소고기커리 아기덮밥 소스) A07 소고기 순한짜장 출산/육아 > 이유식 > 가공이유식'</li><li>'퓨어잇 아이김 3+3팩 골라담기 파래김/김과자 오가닉 아이김자반 3봉_유기농 김100% 3팩 출산/육아 > 이유식 > 가공이유식'</li></ul> |
69
+
70
+ ## Evaluation
71
+
72
+ ### Metrics
73
+ | Label | Accuracy |
74
+ |:--------|:---------|
75
+ | **all** | 1.0 |
76
+
77
+ ## Uses
78
+
79
+ ### Direct Use for Inference
80
+
81
+ First install the SetFit library:
82
+
83
+ ```bash
84
+ pip install setfit
85
+ ```
86
+
87
+ Then you can load this model and run inference.
88
+
89
+ ```python
90
+ from setfit import SetFitModel
91
+
92
+ # Download from the 🤗 Hub
93
+ model = SetFitModel.from_pretrained("mini1013/master_cate_bc25")
94
+ # Run inference
95
+ preds = model("알렉스앤필 6종 스웨덴 유기농 아기 이유식 과일퓨레 당근&망고 출산/육아 > 이유식 > 가공이유식")
96
+ ```
97
+
98
+ <!--
99
+ ### Downstream Use
100
+
101
+ *List how someone could finetune this model on their own dataset.*
102
+ -->
103
+
104
+ <!--
105
+ ### Out-of-Scope Use
106
+
107
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
108
+ -->
109
+
110
+ <!--
111
+ ## Bias, Risks and Limitations
112
+
113
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
114
+ -->
115
+
116
+ <!--
117
+ ### Recommendations
118
+
119
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
120
+ -->
121
+
122
+ ## Training Details
123
+
124
+ ### Training Set Metrics
125
+ | Training set | Min | Median | Max |
126
+ |:-------------|:----|:--------|:----|
127
+ | Word count | 8 | 15.4286 | 23 |
128
+
129
+ | Label | Training Sample Count |
130
+ |:------|:----------------------|
131
+ | 0.0 | 70 |
132
+ | 1.0 | 70 |
133
+
134
+ ### Training Hyperparameters
135
+ - batch_size: (256, 256)
136
+ - num_epochs: (30, 30)
137
+ - max_steps: -1
138
+ - sampling_strategy: oversampling
139
+ - num_iterations: 50
140
+ - body_learning_rate: (2e-05, 1e-05)
141
+ - head_learning_rate: 0.01
142
+ - loss: CosineSimilarityLoss
143
+ - distance_metric: cosine_distance
144
+ - margin: 0.25
145
+ - end_to_end: False
146
+ - use_amp: False
147
+ - warmup_proportion: 0.1
148
+ - l2_weight: 0.01
149
+ - seed: 42
150
+ - eval_max_steps: -1
151
+ - load_best_model_at_end: False
152
+
153
+ ### Training Results
154
+ | Epoch | Step | Training Loss | Validation Loss |
155
+ |:-------:|:----:|:-------------:|:---------------:|
156
+ | 0.0357 | 1 | 0.4786 | - |
157
+ | 1.7857 | 50 | 0.2484 | - |
158
+ | 3.5714 | 100 | 0.0 | - |
159
+ | 5.3571 | 150 | 0.0 | - |
160
+ | 7.1429 | 200 | 0.0 | - |
161
+ | 8.9286 | 250 | 0.0 | - |
162
+ | 10.7143 | 300 | 0.0 | - |
163
+ | 12.5 | 350 | 0.0 | - |
164
+ | 14.2857 | 400 | 0.0 | - |
165
+ | 16.0714 | 450 | 0.0 | - |
166
+ | 17.8571 | 500 | 0.0 | - |
167
+ | 19.6429 | 550 | 0.0 | - |
168
+ | 21.4286 | 600 | 0.0 | - |
169
+ | 23.2143 | 650 | 0.0 | - |
170
+ | 25.0 | 700 | 0.0 | - |
171
+ | 26.7857 | 750 | 0.0 | - |
172
+ | 28.5714 | 800 | 0.0 | - |
173
+
174
+ ### Framework Versions
175
+ - Python: 3.10.12
176
+ - SetFit: 1.1.0
177
+ - Sentence Transformers: 3.3.1
178
+ - Transformers: 4.44.2
179
+ - PyTorch: 2.2.0a0+81ea7a4
180
+ - Datasets: 3.2.0
181
+ - Tokenizers: 0.19.1
182
+
183
+ ## Citation
184
+
185
+ ### BibTeX
186
+ ```bibtex
187
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
188
+ doi = {10.48550/ARXIV.2209.11055},
189
+ url = {https://arxiv.org/abs/2209.11055},
190
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
191
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
192
+ title = {Efficient Few-Shot Learning Without Prompts},
193
+ publisher = {arXiv},
194
+ year = {2022},
195
+ copyright = {Creative Commons Attribution 4.0 International}
196
+ }
197
+ ```
198
+
199
+ <!--
200
+ ## Glossary
201
+
202
+ *Clearly define terms in order to be accessible across audiences.*
203
+ -->
204
+
205
+ <!--
206
+ ## Model Card Authors
207
+
208
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
209
+ -->
210
+
211
+ <!--
212
+ ## Model Card Contact
213
+
214
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
215
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_bc",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:597e3b71cb54b3dc2c3914e83bdde873a9f10cd69094f07ed65d3db8ae94b1fb
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6597f6a6e1534a59313350c96825e185bfa616eaf91ddd90148ec4f05cc98da1
3
+ size 6975
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff