|
--- |
|
license: mit |
|
base_model: facebook/w2v-bert-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice_16_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: w2v-bert-2.0-czech-colab-cv16 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: common_voice_16_0 |
|
type: common_voice_16_0 |
|
config: cs |
|
split: test |
|
args: cs |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.05733702722973076 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# w2v-bert-2.0-czech-colab-cv16 |
|
|
|
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_16_0 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1023 |
|
- Wer: 0.0573 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 1.5297 | 0.66 | 300 | 0.1448 | 0.1299 | |
|
| 0.0886 | 1.32 | 600 | 0.1353 | 0.1051 | |
|
| 0.0717 | 1.98 | 900 | 0.1157 | 0.0861 | |
|
| 0.0463 | 2.64 | 1200 | 0.0994 | 0.0759 | |
|
| 0.0404 | 3.3 | 1500 | 0.1054 | 0.0724 | |
|
| 0.0314 | 3.96 | 1800 | 0.0915 | 0.0694 | |
|
| 0.0227 | 4.63 | 2100 | 0.0926 | 0.0664 | |
|
| 0.0205 | 5.29 | 2400 | 0.0992 | 0.0652 | |
|
| 0.0161 | 5.95 | 2700 | 0.0932 | 0.0654 | |
|
| 0.0124 | 6.61 | 3000 | 0.0902 | 0.0629 | |
|
| 0.0097 | 7.27 | 3300 | 0.0970 | 0.0612 | |
|
| 0.0081 | 7.93 | 3600 | 0.0946 | 0.0602 | |
|
| 0.0054 | 8.59 | 3900 | 0.0962 | 0.0588 | |
|
| 0.0048 | 9.25 | 4200 | 0.1029 | 0.0579 | |
|
| 0.0034 | 9.91 | 4500 | 0.1023 | 0.0573 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.0.dev0 |
|
- Pytorch 2.2.0+cu121 |
|
- Datasets 2.16.2.dev0 |
|
- Tokenizers 0.15.1 |
|
|