mihdalal commited on
Commit
0c3c527
·
verified ·
1 Parent(s): 09cf70b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +117 -1
README.md CHANGED
@@ -1,6 +1,122 @@
1
  ---
2
  license: mit
 
 
3
  tags:
4
  - robotics
5
  - motion planning
6
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ language:
4
+ - en
5
  tags:
6
  - robotics
7
  - motion planning
8
+ ---
9
+ # Neural MP
10
+
11
+ Neural MP is a machine learning-based motion planning system for robotic manipulation tasks. It combines neural networks trained on large-scale simulated data with lightweight optimization techniques to generate efficient, collision-free trajectories. Neural MP is designed to generalize across diverse environments and obstacle configurations, making it suitable for both simulated and real-world robotic applications. This repository contains the model weights for Neural MP.
12
+
13
+ All Neural MP checkpoints, as well as our [training codebase](https://github.com/mihdalal/neuralmotionplanner) are released under an MIT License.
14
+
15
+ For full details, please read our [paper](https://mihdalal.github.io/neuralmotionplanner/resources/paper.pdf) and see [our project page](https://mihdalal.github.io/neuralmotionplanner/).
16
+
17
+ ## Model Summary
18
+ - **Developed by:** The Neural MP team consisting of researchers from Carnegie Mellon University.
19
+ - **Language(s) (NLP):** en
20
+ - **License:** MIT
21
+ - **Pretraining Dataset:** Coming soon
22
+ - **Repository:** [https://github.com/mihdalal/neuralmotionplanner](https://github.com/mihdalal/neuralmotionplanner)
23
+ - **Paper:** Coming soon
24
+ - **Project Page & Videos:** [https://mihdalal.github.io/neuralmotionplanner/](https://mihdalal.github.io/neuralmotionplanner/)
25
+
26
+ ## Installation
27
+
28
+ Please read [here](https://github.com/mihdalal/neural_mp?tab=readme-ov-file#installation-instructions) for detailed instructions
29
+
30
+ ## Usage
31
+
32
+ Neural MP model takes in 3D point cloud and start & goal angles of the Franka robot as input, and predict 7-DoF delta joint actions. We provide a wrapper class [NeuralMP](https://github.com/mihdalal/neural_mp/blob/master/neural_mp/real_utils/neural_motion_planner.py) for inference and deploy our model in the real world.
33
+
34
+ Here's an deployment example with the Manimo Franka control library:
35
+
36
+ Note: using Manimo is not required, you may use other Franka control libraries by creating a wrapper class which inherits from FrankaRealEnv (see [franka_real_env.py](https://github.com/mihdalal/neural_mp/blob/master/neural_mp/envs/franka_real_env.py))
37
+
38
+ ```python
39
+ import argparse
40
+ import numpy as np
41
+ from neural_mp.envs.franka_real_env import FrankaRealEnvManimo
42
+ from neural_mp.real_utils.neural_motion_planner import NeuralMP
43
+ if __name__ == "__main__":
44
+ parser = argparse.ArgumentParser()
45
+ parser.add_argument(
46
+ "--mdl_url",
47
+ type=str,
48
+ default="mihdalal/NeuralMP",
49
+ help="hugging face url to load the neural_mp model",
50
+ )
51
+ parser.add_argument(
52
+ "--cache-name",
53
+ type=str,
54
+ default="scene1_single_blcok",
55
+ help="Specify the scene cache file with pcd and rgb data",
56
+ )
57
+ parser.add_argument(
58
+ "--use-cache",
59
+ action="store_true",
60
+ help=("If set, will use pre-stored point clouds"),
61
+ )
62
+ parser.add_argument(
63
+ "--debug-combined-pcd",
64
+ action="store_true",
65
+ help=("If set, will show visualization of the combined pcd"),
66
+ )
67
+ parser.add_argument(
68
+ "--denoise-pcd",
69
+ action="store_true",
70
+ help=("If set, will apply denoising to the pcds"),
71
+ )
72
+ parser.add_argument(
73
+ "--train-mode", action="store_true", help=("If set, will eval with policy in training mode")
74
+ )
75
+ parser.add_argument(
76
+ "--tto", action="store_true", help=("If set, will apply test time optimization")
77
+ )
78
+ parser.add_argument(
79
+ "--in-hand", action="store_true", help=("If set, will enable in hand mode for eval")
80
+ )
81
+ parser.add_argument(
82
+ "--in-hand-params",
83
+ nargs="+",
84
+ type=float,
85
+ default=[0.1, 0.1, 0.1, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0, 1.0],
86
+ help="Specify the bounding box of the in hand object. 10 params in total [size(xyz), pos(xyz), ori(xyzw)] 3+3+4.",
87
+ )
88
+ args = parser.parse_args()
89
+ env = FrankaRealEnvManimo()
90
+ neural_mp = NeuralMP(
91
+ env=env,
92
+ model_url=args.mdl_url,
93
+ train_mode=args.train_mode,
94
+ in_hand=args.in_hand,
95
+ in_hand_params=args.in_hand_params,
96
+ visualize=True,
97
+ )
98
+ points, colors = neural_mp.get_scene_pcd(
99
+ use_cache=args.use_cache,
100
+ cache_name=args.cache_name,
101
+ debug_combined_pcd=args.debug_combined_pcd,
102
+ denoise=args.denoise_pcd,
103
+ )
104
+ # specify start and goal configurations
105
+ start_config = np.array([-0.538, 0.628, -0.061, -1.750, 0.126, 2.418, 1.610])
106
+ goal_config = np.array([1.067, 0.847, -0.591, -1.627, 0.623, 2.295, 2.580])
107
+ if args.tto:
108
+ trajectory = neural_mp.motion_plan_with_tto(
109
+ start_config=start_config,
110
+ goal_config=goal_config,
111
+ points=points,
112
+ colors=colors,
113
+ )
114
+ else:
115
+ trajectory = neural_mp.motion_plan(
116
+ start_config=start_config,
117
+ goal_config=goal_config,
118
+ points=points,
119
+ colors=colors,
120
+ )
121
+ success, joint_error = neural_mp.execute_motion_plan(trajectory, speed=0.2)
122
+ ```