File size: 2,090 Bytes
57d53b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: transformers
license: apache-2.0
base_model: t5-small
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-small-finetuned-xsum-custom-2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-finetuned-xsum-custom-2

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3786
- Rouge1: 31.4362
- Rouge2: 9.6838
- Rougel: 25.2999
- Rougelsum: 25.2866

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 6

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1  | Rouge2 | Rougel  | Rougelsum |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|
| 2.8203        | 1.0   | 5014  | 2.4866          | 29.4445 | 8.3337 | 23.5606 | 23.5476   |
| 2.6588        | 2.0   | 10028 | 2.4326          | 30.325  | 8.9839 | 24.2942 | 24.2757   |
| 2.5898        | 3.0   | 15042 | 2.4066          | 30.6845 | 9.2984 | 24.7842 | 24.7798   |
| 2.5414        | 4.0   | 20056 | 2.3909          | 31.2002 | 9.4684 | 25.0031 | 24.996    |
| 2.5094        | 5.0   | 25070 | 2.3796          | 31.3796 | 9.6549 | 25.2979 | 25.2858   |
| 2.4899        | 6.0   | 30084 | 2.3786          | 31.4362 | 9.6838 | 25.2999 | 25.2866   |


### Framework versions

- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1