t5-small-finetuned-xsum-custom-2

This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3786
  • Rouge1: 31.4362
  • Rouge2: 9.6838
  • Rougel: 25.2999
  • Rougelsum: 25.2866

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
2.8203 1.0 5014 2.4866 29.4445 8.3337 23.5606 23.5476
2.6588 2.0 10028 2.4326 30.325 8.9839 24.2942 24.2757
2.5898 3.0 15042 2.4066 30.6845 9.2984 24.7842 24.7798
2.5414 4.0 20056 2.3909 31.2002 9.4684 25.0031 24.996
2.5094 5.0 25070 2.3796 31.3796 9.6549 25.2979 25.2858
2.4899 6.0 30084 2.3786 31.4362 9.6838 25.2999 25.2866

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
8
Safetensors
Model size
60.5M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for michalakos/t5-small-finetuned-xsum-custom-2

Base model

google-t5/t5-small
Finetuned
(1945)
this model