|
[04/19 13:19:35] detectron2 INFO: Rank of current process: 0. World size: 1 |
|
[04/19 13:19:36] detectron2 INFO: Environment info: |
|
---------------------- ---------------------------------------------------------------- |
|
sys.platform linux |
|
Python 3.9.16 (main, Dec 7 2022, 01:11:51) [GCC 9.4.0] |
|
numpy 1.22.4 |
|
detectron2 0.4 @/usr/local/lib/python3.9/dist-packages/detectron2 |
|
Compiler GCC 9.4 |
|
CUDA compiler CUDA 11.8 |
|
detectron2 arch flags 7.5 |
|
DETECTRON2_ENV_MODULE <not set> |
|
PyTorch 2.0.0+cu118 @/usr/local/lib/python3.9/dist-packages/torch |
|
PyTorch debug build False |
|
GPU available True |
|
GPU 0 Tesla T4 (arch=7.5) |
|
CUDA_HOME /usr/local/cuda |
|
Pillow 9.5.0 |
|
torchvision 0.15.1+cu118 @/usr/local/lib/python3.9/dist-packages/torchvision |
|
torchvision arch flags 3.5, 5.0, 6.0, 7.0, 7.5, 8.0, 8.6 |
|
fvcore 0.1.3.post20210317 |
|
cv2 4.7.0 |
|
---------------------- ---------------------------------------------------------------- |
|
PyTorch built with: |
|
- GCC 9.3 |
|
- C++ Version: 201703 |
|
- Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications |
|
- Intel(R) MKL-DNN v2.7.3 (Git Hash 6dbeffbae1f23cbbeae17adb7b5b13f1f37c080e) |
|
- OpenMP 201511 (a.k.a. OpenMP 4.5) |
|
- LAPACK is enabled (usually provided by MKL) |
|
- NNPACK is enabled |
|
- CPU capability usage: AVX2 |
|
- CUDA Runtime 11.8 |
|
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90 |
|
- CuDNN 8.7 |
|
- Magma 2.6.1 |
|
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.0.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, |
|
|
|
[04/19 13:19:36] detectron2 INFO: Command line arguments: Namespace(config_file='/content/layout-model-training/config_LayoutParser_PrimaDataset.yaml', resume=False, eval_only=False, num_gpus=1, num_machines=1, machine_rank=0, dist_url='tcp://127.0.0.1:49152', opts=['OUTPUT_DIR', '/content/drive/MyDrive/layoutparser/modele', 'SOLVER.IMS_PER_BATCH', '2'], dataset_name='modele', json_annotation_train='/content/drive/MyDrive/layoutparser/dataset6/train/via_project_19Apr2023_15h0m_coco.json', image_path_train='/content/drive/MyDrive/layoutparser/dataset6/train', json_annotation_val='/content/drive/MyDrive/layoutparser/dataset6/val/via_project_19Apr2023_15h9m_coco.json', image_path_val='/content/drive/MyDrive/layoutparser/dataset6/val') |
|
[04/19 13:19:36] detectron2 INFO: Contents of args.config_file=/content/layout-model-training/config_LayoutParser_PrimaDataset.yaml: |
|
CUDNN_BENCHMARK: false |
|
DATALOADER: |
|
ASPECT_RATIO_GROUPING: true |
|
FILTER_EMPTY_ANNOTATIONS: true |
|
NUM_WORKERS: 4 |
|
REPEAT_THRESHOLD: 0.0 |
|
SAMPLER_TRAIN: TrainingSampler |
|
DATASETS: |
|
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000 |
|
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000 |
|
PROPOSAL_FILES_TEST: [] |
|
PROPOSAL_FILES_TRAIN: [] |
|
TEST: |
|
- prima-layout-val |
|
TRAIN: |
|
- prima-layout-train |
|
GLOBAL: |
|
HACK: 1.0 |
|
INPUT: |
|
CROP: |
|
ENABLED: false |
|
SIZE: |
|
- 0.9 |
|
- 0.9 |
|
TYPE: relative_range |
|
FORMAT: BGR |
|
MASK_FORMAT: polygon |
|
MAX_SIZE_TEST: 1333 |
|
MAX_SIZE_TRAIN: 1333 |
|
MIN_SIZE_TEST: 800 |
|
MIN_SIZE_TRAIN: |
|
- 640 |
|
- 672 |
|
- 704 |
|
- 736 |
|
- 768 |
|
- 800 |
|
MIN_SIZE_TRAIN_SAMPLING: choice |
|
MODEL: |
|
ANCHOR_GENERATOR: |
|
ANGLES: |
|
- - -90 |
|
- 0 |
|
- 90 |
|
ASPECT_RATIOS: |
|
- - 0.5 |
|
- 1.0 |
|
- 2.0 |
|
NAME: DefaultAnchorGenerator |
|
OFFSET: 0.0 |
|
SIZES: |
|
- - 32 |
|
- - 64 |
|
- - 128 |
|
- - 256 |
|
- - 512 |
|
BACKBONE: |
|
FREEZE_AT: 2 |
|
NAME: build_resnet_fpn_backbone |
|
DEVICE: cuda |
|
FPN: |
|
FUSE_TYPE: sum |
|
IN_FEATURES: |
|
- res2 |
|
- res3 |
|
- res4 |
|
- res5 |
|
NORM: '' |
|
OUT_CHANNELS: 256 |
|
KEYPOINT_ON: false |
|
LOAD_PROPOSALS: false |
|
MASK_ON: true |
|
META_ARCHITECTURE: GeneralizedRCNN |
|
PANOPTIC_FPN: |
|
COMBINE: |
|
ENABLED: true |
|
INSTANCES_CONFIDENCE_THRESH: 0.5 |
|
OVERLAP_THRESH: 0.5 |
|
STUFF_AREA_LIMIT: 4096 |
|
INSTANCE_LOSS_WEIGHT: 1.0 |
|
PIXEL_MEAN: |
|
- 103.53 |
|
- 116.28 |
|
- 123.675 |
|
PIXEL_STD: |
|
- 1.0 |
|
- 1.0 |
|
- 1.0 |
|
PROPOSAL_GENERATOR: |
|
MIN_SIZE: 0 |
|
NAME: RPN |
|
RESNETS: |
|
DEFORM_MODULATED: false |
|
DEFORM_NUM_GROUPS: 1 |
|
DEFORM_ON_PER_STAGE: |
|
- false |
|
- false |
|
- false |
|
- false |
|
DEPTH: 50 |
|
NORM: FrozenBN |
|
NUM_GROUPS: 1 |
|
OUT_FEATURES: |
|
- res2 |
|
- res3 |
|
- res4 |
|
- res5 |
|
RES2_OUT_CHANNELS: 256 |
|
RES5_DILATION: 1 |
|
STEM_OUT_CHANNELS: 64 |
|
STRIDE_IN_1X1: true |
|
WIDTH_PER_GROUP: 64 |
|
RETINANET: |
|
BBOX_REG_WEIGHTS: |
|
- 1.0 |
|
- 1.0 |
|
- 1.0 |
|
- 1.0 |
|
FOCAL_LOSS_ALPHA: 0.25 |
|
FOCAL_LOSS_GAMMA: 2.0 |
|
IN_FEATURES: |
|
- p3 |
|
- p4 |
|
- p5 |
|
- p6 |
|
- p7 |
|
IOU_LABELS: |
|
- 0 |
|
- -1 |
|
- 1 |
|
IOU_THRESHOLDS: |
|
- 0.4 |
|
- 0.5 |
|
NMS_THRESH_TEST: 0.5 |
|
NUM_CLASSES: 80 |
|
NUM_CONVS: 4 |
|
PRIOR_PROB: 0.01 |
|
SCORE_THRESH_TEST: 0.05 |
|
SMOOTH_L1_LOSS_BETA: 0.1 |
|
TOPK_CANDIDATES_TEST: 1000 |
|
ROI_BOX_CASCADE_HEAD: |
|
BBOX_REG_WEIGHTS: |
|
- - 10.0 |
|
- 10.0 |
|
- 5.0 |
|
- 5.0 |
|
- - 20.0 |
|
- 20.0 |
|
- 10.0 |
|
- 10.0 |
|
- - 30.0 |
|
- 30.0 |
|
- 15.0 |
|
- 15.0 |
|
IOUS: |
|
- 0.5 |
|
- 0.6 |
|
- 0.7 |
|
ROI_BOX_HEAD: |
|
BBOX_REG_WEIGHTS: |
|
- 10.0 |
|
- 10.0 |
|
- 5.0 |
|
- 5.0 |
|
CLS_AGNOSTIC_BBOX_REG: false |
|
CONV_DIM: 256 |
|
FC_DIM: 1024 |
|
NAME: FastRCNNConvFCHead |
|
NORM: '' |
|
NUM_CONV: 0 |
|
NUM_FC: 2 |
|
POOLER_RESOLUTION: 7 |
|
POOLER_SAMPLING_RATIO: 0 |
|
POOLER_TYPE: ROIAlignV2 |
|
SMOOTH_L1_BETA: 0.0 |
|
TRAIN_ON_PRED_BOXES: false |
|
ROI_HEADS: |
|
BATCH_SIZE_PER_IMAGE: 512 |
|
IN_FEATURES: |
|
- p2 |
|
- p3 |
|
- p4 |
|
- p5 |
|
IOU_LABELS: |
|
- 0 |
|
- 1 |
|
IOU_THRESHOLDS: |
|
- 0.5 |
|
NAME: StandardROIHeads |
|
NMS_THRESH_TEST: 0.5 |
|
NUM_CLASSES: 7 |
|
POSITIVE_FRACTION: 0.25 |
|
PROPOSAL_APPEND_GT: true |
|
SCORE_THRESH_TEST: 0.05 |
|
ROI_KEYPOINT_HEAD: |
|
CONV_DIMS: |
|
- 512 |
|
- 512 |
|
- 512 |
|
- 512 |
|
- 512 |
|
- 512 |
|
- 512 |
|
- 512 |
|
LOSS_WEIGHT: 1.0 |
|
MIN_KEYPOINTS_PER_IMAGE: 1 |
|
NAME: KRCNNConvDeconvUpsampleHead |
|
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true |
|
NUM_KEYPOINTS: 17 |
|
POOLER_RESOLUTION: 14 |
|
POOLER_SAMPLING_RATIO: 0 |
|
POOLER_TYPE: ROIAlignV2 |
|
ROI_MASK_HEAD: |
|
CLS_AGNOSTIC_MASK: false |
|
CONV_DIM: 256 |
|
NAME: MaskRCNNConvUpsampleHead |
|
NORM: '' |
|
NUM_CONV: 4 |
|
POOLER_RESOLUTION: 14 |
|
POOLER_SAMPLING_RATIO: 0 |
|
POOLER_TYPE: ROIAlignV2 |
|
RPN: |
|
BATCH_SIZE_PER_IMAGE: 256 |
|
BBOX_REG_WEIGHTS: |
|
- 1.0 |
|
- 1.0 |
|
- 1.0 |
|
- 1.0 |
|
BOUNDARY_THRESH: -1 |
|
HEAD_NAME: StandardRPNHead |
|
IN_FEATURES: |
|
- p2 |
|
- p3 |
|
- p4 |
|
- p5 |
|
- p6 |
|
IOU_LABELS: |
|
- 0 |
|
- -1 |
|
- 1 |
|
IOU_THRESHOLDS: |
|
- 0.3 |
|
- 0.7 |
|
LOSS_WEIGHT: 1.0 |
|
NMS_THRESH: 0.7 |
|
POSITIVE_FRACTION: 0.5 |
|
POST_NMS_TOPK_TEST: 1000 |
|
POST_NMS_TOPK_TRAIN: 1000 |
|
PRE_NMS_TOPK_TEST: 1000 |
|
PRE_NMS_TOPK_TRAIN: 2000 |
|
SMOOTH_L1_BETA: 0.0 |
|
SEM_SEG_HEAD: |
|
COMMON_STRIDE: 4 |
|
CONVS_DIM: 128 |
|
IGNORE_VALUE: 255 |
|
IN_FEATURES: |
|
- p2 |
|
- p3 |
|
- p4 |
|
- p5 |
|
LOSS_WEIGHT: 1.0 |
|
NAME: SemSegFPNHead |
|
NORM: GN |
|
NUM_CLASSES: 54 |
|
WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/ |
|
OUTPUT_DIR: ../outputs/prima/mask_rcnn_R_50_FPN_3x/ |
|
SEED: -1 |
|
SOLVER: |
|
BASE_LR: 0.00025 |
|
BIAS_LR_FACTOR: 1.0 |
|
CHECKPOINT_PERIOD: 50 |
|
CLIP_GRADIENTS: |
|
CLIP_TYPE: value |
|
CLIP_VALUE: 1.0 |
|
ENABLED: false |
|
NORM_TYPE: 2.0 |
|
GAMMA: 0.1 |
|
IMS_PER_BATCH: 2 |
|
LR_SCHEDULER_NAME: WarmupMultiStepLR |
|
MAX_ITER: 300 |
|
MOMENTUM: 0.9 |
|
NESTEROV: false |
|
STEPS: |
|
- 210000 |
|
- 250000 |
|
WARMUP_FACTOR: 0.001 |
|
WARMUP_ITERS: 1000 |
|
WARMUP_METHOD: linear |
|
WEIGHT_DECAY: 0.0001 |
|
WEIGHT_DECAY_BIAS: 0.0001 |
|
WEIGHT_DECAY_NORM: 0.0 |
|
TEST: |
|
AUG: |
|
ENABLED: false |
|
FLIP: true |
|
MAX_SIZE: 4000 |
|
MIN_SIZES: |
|
- 400 |
|
- 500 |
|
- 600 |
|
- 700 |
|
- 800 |
|
- 900 |
|
- 1000 |
|
- 1100 |
|
- 1200 |
|
DETECTIONS_PER_IMAGE: 100 |
|
EVAL_PERIOD: 0 |
|
EXPECTED_RESULTS: [] |
|
KEYPOINT_OKS_SIGMAS: [] |
|
PRECISE_BN: |
|
ENABLED: false |
|
NUM_ITER: 200 |
|
VERSION: 2 |
|
VIS_PERIOD: 0 |
|
|
|
[04/19 13:19:36] detectron2 INFO: Running with full config: |
|
CUDNN_BENCHMARK: False |
|
DATALOADER: |
|
ASPECT_RATIO_GROUPING: True |
|
FILTER_EMPTY_ANNOTATIONS: True |
|
NUM_WORKERS: 4 |
|
REPEAT_THRESHOLD: 0.0 |
|
SAMPLER_TRAIN: TrainingSampler |
|
DATASETS: |
|
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000 |
|
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000 |
|
PROPOSAL_FILES_TEST: () |
|
PROPOSAL_FILES_TRAIN: () |
|
TEST: ('modele-val',) |
|
TRAIN: ('modele-train',) |
|
GLOBAL: |
|
HACK: 1.0 |
|
INPUT: |
|
CROP: |
|
ENABLED: False |
|
SIZE: [0.9, 0.9] |
|
TYPE: relative_range |
|
FORMAT: BGR |
|
MASK_FORMAT: polygon |
|
MAX_SIZE_TEST: 1333 |
|
MAX_SIZE_TRAIN: 1333 |
|
MIN_SIZE_TEST: 800 |
|
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) |
|
MIN_SIZE_TRAIN_SAMPLING: choice |
|
RANDOM_FLIP: horizontal |
|
MODEL: |
|
ANCHOR_GENERATOR: |
|
ANGLES: [[-90, 0, 90]] |
|
ASPECT_RATIOS: [[0.5, 1.0, 2.0]] |
|
NAME: DefaultAnchorGenerator |
|
OFFSET: 0.0 |
|
SIZES: [[32], [64], [128], [256], [512]] |
|
BACKBONE: |
|
FREEZE_AT: 2 |
|
NAME: build_resnet_fpn_backbone |
|
DEVICE: cuda |
|
FPN: |
|
FUSE_TYPE: sum |
|
IN_FEATURES: ['res2', 'res3', 'res4', 'res5'] |
|
NORM: |
|
OUT_CHANNELS: 256 |
|
KEYPOINT_ON: False |
|
LOAD_PROPOSALS: False |
|
MASK_ON: True |
|
META_ARCHITECTURE: GeneralizedRCNN |
|
PANOPTIC_FPN: |
|
COMBINE: |
|
ENABLED: True |
|
INSTANCES_CONFIDENCE_THRESH: 0.5 |
|
OVERLAP_THRESH: 0.5 |
|
STUFF_AREA_LIMIT: 4096 |
|
INSTANCE_LOSS_WEIGHT: 1.0 |
|
PIXEL_MEAN: [103.53, 116.28, 123.675] |
|
PIXEL_STD: [1.0, 1.0, 1.0] |
|
PROPOSAL_GENERATOR: |
|
MIN_SIZE: 0 |
|
NAME: RPN |
|
RESNETS: |
|
DEFORM_MODULATED: False |
|
DEFORM_NUM_GROUPS: 1 |
|
DEFORM_ON_PER_STAGE: [False, False, False, False] |
|
DEPTH: 50 |
|
NORM: FrozenBN |
|
NUM_GROUPS: 1 |
|
OUT_FEATURES: ['res2', 'res3', 'res4', 'res5'] |
|
RES2_OUT_CHANNELS: 256 |
|
RES5_DILATION: 1 |
|
STEM_OUT_CHANNELS: 64 |
|
STRIDE_IN_1X1: True |
|
WIDTH_PER_GROUP: 64 |
|
RETINANET: |
|
BBOX_REG_LOSS_TYPE: smooth_l1 |
|
BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0) |
|
FOCAL_LOSS_ALPHA: 0.25 |
|
FOCAL_LOSS_GAMMA: 2.0 |
|
IN_FEATURES: ['p3', 'p4', 'p5', 'p6', 'p7'] |
|
IOU_LABELS: [0, -1, 1] |
|
IOU_THRESHOLDS: [0.4, 0.5] |
|
NMS_THRESH_TEST: 0.5 |
|
NORM: |
|
NUM_CLASSES: 80 |
|
NUM_CONVS: 4 |
|
PRIOR_PROB: 0.01 |
|
SCORE_THRESH_TEST: 0.05 |
|
SMOOTH_L1_LOSS_BETA: 0.1 |
|
TOPK_CANDIDATES_TEST: 1000 |
|
ROI_BOX_CASCADE_HEAD: |
|
BBOX_REG_WEIGHTS: ([10.0, 10.0, 5.0, 5.0], [20.0, 20.0, 10.0, 10.0], [30.0, 30.0, 15.0, 15.0]) |
|
IOUS: (0.5, 0.6, 0.7) |
|
ROI_BOX_HEAD: |
|
BBOX_REG_LOSS_TYPE: smooth_l1 |
|
BBOX_REG_LOSS_WEIGHT: 1.0 |
|
BBOX_REG_WEIGHTS: (10.0, 10.0, 5.0, 5.0) |
|
CLS_AGNOSTIC_BBOX_REG: False |
|
CONV_DIM: 256 |
|
FC_DIM: 1024 |
|
NAME: FastRCNNConvFCHead |
|
NORM: |
|
NUM_CONV: 0 |
|
NUM_FC: 2 |
|
POOLER_RESOLUTION: 7 |
|
POOLER_SAMPLING_RATIO: 0 |
|
POOLER_TYPE: ROIAlignV2 |
|
SMOOTH_L1_BETA: 0.0 |
|
TRAIN_ON_PRED_BOXES: False |
|
ROI_HEADS: |
|
BATCH_SIZE_PER_IMAGE: 512 |
|
IN_FEATURES: ['p2', 'p3', 'p4', 'p5'] |
|
IOU_LABELS: [0, 1] |
|
IOU_THRESHOLDS: [0.5] |
|
NAME: StandardROIHeads |
|
NMS_THRESH_TEST: 0.5 |
|
NUM_CLASSES: 2 |
|
POSITIVE_FRACTION: 0.25 |
|
PROPOSAL_APPEND_GT: True |
|
SCORE_THRESH_TEST: 0.05 |
|
ROI_KEYPOINT_HEAD: |
|
CONV_DIMS: (512, 512, 512, 512, 512, 512, 512, 512) |
|
LOSS_WEIGHT: 1.0 |
|
MIN_KEYPOINTS_PER_IMAGE: 1 |
|
NAME: KRCNNConvDeconvUpsampleHead |
|
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: True |
|
NUM_KEYPOINTS: 17 |
|
POOLER_RESOLUTION: 14 |
|
POOLER_SAMPLING_RATIO: 0 |
|
POOLER_TYPE: ROIAlignV2 |
|
ROI_MASK_HEAD: |
|
CLS_AGNOSTIC_MASK: False |
|
CONV_DIM: 256 |
|
NAME: MaskRCNNConvUpsampleHead |
|
NORM: |
|
NUM_CONV: 4 |
|
POOLER_RESOLUTION: 14 |
|
POOLER_SAMPLING_RATIO: 0 |
|
POOLER_TYPE: ROIAlignV2 |
|
RPN: |
|
BATCH_SIZE_PER_IMAGE: 256 |
|
BBOX_REG_LOSS_TYPE: smooth_l1 |
|
BBOX_REG_LOSS_WEIGHT: 1.0 |
|
BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0) |
|
BOUNDARY_THRESH: -1 |
|
HEAD_NAME: StandardRPNHead |
|
IN_FEATURES: ['p2', 'p3', 'p4', 'p5', 'p6'] |
|
IOU_LABELS: [0, -1, 1] |
|
IOU_THRESHOLDS: [0.3, 0.7] |
|
LOSS_WEIGHT: 1.0 |
|
NMS_THRESH: 0.7 |
|
POSITIVE_FRACTION: 0.5 |
|
POST_NMS_TOPK_TEST: 1000 |
|
POST_NMS_TOPK_TRAIN: 1000 |
|
PRE_NMS_TOPK_TEST: 1000 |
|
PRE_NMS_TOPK_TRAIN: 2000 |
|
SMOOTH_L1_BETA: 0.0 |
|
SEM_SEG_HEAD: |
|
COMMON_STRIDE: 4 |
|
CONVS_DIM: 128 |
|
IGNORE_VALUE: 255 |
|
IN_FEATURES: ['p2', 'p3', 'p4', 'p5'] |
|
LOSS_WEIGHT: 1.0 |
|
NAME: SemSegFPNHead |
|
NORM: GN |
|
NUM_CLASSES: 54 |
|
WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/ |
|
OUTPUT_DIR: /content/drive/MyDrive/layoutparser/modele |
|
SEED: -1 |
|
SOLVER: |
|
AMP: |
|
ENABLED: False |
|
BASE_LR: 0.00025 |
|
BIAS_LR_FACTOR: 1.0 |
|
CHECKPOINT_PERIOD: 50 |
|
CLIP_GRADIENTS: |
|
CLIP_TYPE: value |
|
CLIP_VALUE: 1.0 |
|
ENABLED: False |
|
NORM_TYPE: 2.0 |
|
GAMMA: 0.1 |
|
IMS_PER_BATCH: 2 |
|
LR_SCHEDULER_NAME: WarmupMultiStepLR |
|
MAX_ITER: 300 |
|
MOMENTUM: 0.9 |
|
NESTEROV: False |
|
REFERENCE_WORLD_SIZE: 0 |
|
STEPS: (210000, 250000) |
|
WARMUP_FACTOR: 0.001 |
|
WARMUP_ITERS: 1000 |
|
WARMUP_METHOD: linear |
|
WEIGHT_DECAY: 0.0001 |
|
WEIGHT_DECAY_BIAS: 0.0001 |
|
WEIGHT_DECAY_NORM: 0.0 |
|
TEST: |
|
AUG: |
|
ENABLED: False |
|
FLIP: True |
|
MAX_SIZE: 4000 |
|
MIN_SIZES: (400, 500, 600, 700, 800, 900, 1000, 1100, 1200) |
|
DETECTIONS_PER_IMAGE: 100 |
|
EVAL_PERIOD: 0 |
|
EXPECTED_RESULTS: [] |
|
KEYPOINT_OKS_SIGMAS: [] |
|
PRECISE_BN: |
|
ENABLED: False |
|
NUM_ITER: 200 |
|
VERSION: 2 |
|
VIS_PERIOD: 0 |
|
[04/19 13:19:36] detectron2 INFO: Full config saved to /content/drive/MyDrive/layoutparser/modele/config.yaml |
|
[04/19 13:19:36] d2.utils.env INFO: Using a generated random seed 36661240 |
|
[04/19 13:19:43] d2.engine.defaults INFO: Model: |
|
GeneralizedRCNN( |
|
(backbone): FPN( |
|
(fpn_lateral2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1)) |
|
(fpn_output2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) |
|
(fpn_lateral3): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1)) |
|
(fpn_output3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) |
|
(fpn_lateral4): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1)) |
|
(fpn_output4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) |
|
(fpn_lateral5): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1)) |
|
(fpn_output5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) |
|
(top_block): LastLevelMaxPool() |
|
(bottom_up): ResNet( |
|
(stem): BasicStem( |
|
(conv1): Conv2d( |
|
3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) |
|
) |
|
) |
|
(res2): Sequential( |
|
(0): BottleneckBlock( |
|
(shortcut): Conv2d( |
|
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv1): Conv2d( |
|
64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
) |
|
(1): BottleneckBlock( |
|
(conv1): Conv2d( |
|
256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
) |
|
(2): BottleneckBlock( |
|
(conv1): Conv2d( |
|
256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
) |
|
) |
|
(res3): Sequential( |
|
(0): BottleneckBlock( |
|
(shortcut): Conv2d( |
|
256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
(conv1): Conv2d( |
|
256, 128, kernel_size=(1, 1), stride=(2, 2), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
) |
|
(1): BottleneckBlock( |
|
(conv1): Conv2d( |
|
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
) |
|
(2): BottleneckBlock( |
|
(conv1): Conv2d( |
|
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
) |
|
(3): BottleneckBlock( |
|
(conv1): Conv2d( |
|
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
) |
|
) |
|
(res4): Sequential( |
|
(0): BottleneckBlock( |
|
(shortcut): Conv2d( |
|
512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) |
|
) |
|
(conv1): Conv2d( |
|
512, 256, kernel_size=(1, 1), stride=(2, 2), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) |
|
) |
|
) |
|
(1): BottleneckBlock( |
|
(conv1): Conv2d( |
|
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) |
|
) |
|
) |
|
(2): BottleneckBlock( |
|
(conv1): Conv2d( |
|
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) |
|
) |
|
) |
|
(3): BottleneckBlock( |
|
(conv1): Conv2d( |
|
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) |
|
) |
|
) |
|
(4): BottleneckBlock( |
|
(conv1): Conv2d( |
|
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) |
|
) |
|
) |
|
(5): BottleneckBlock( |
|
(conv1): Conv2d( |
|
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) |
|
) |
|
) |
|
) |
|
(res5): Sequential( |
|
(0): BottleneckBlock( |
|
(shortcut): Conv2d( |
|
1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05) |
|
) |
|
(conv1): Conv2d( |
|
1024, 512, kernel_size=(1, 1), stride=(2, 2), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05) |
|
) |
|
) |
|
(1): BottleneckBlock( |
|
(conv1): Conv2d( |
|
2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05) |
|
) |
|
) |
|
(2): BottleneckBlock( |
|
(conv1): Conv2d( |
|
2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05) |
|
) |
|
) |
|
) |
|
) |
|
) |
|
(proposal_generator): RPN( |
|
(rpn_head): StandardRPNHead( |
|
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) |
|
(objectness_logits): Conv2d(256, 3, kernel_size=(1, 1), stride=(1, 1)) |
|
(anchor_deltas): Conv2d(256, 12, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
(anchor_generator): DefaultAnchorGenerator( |
|
(cell_anchors): BufferList() |
|
) |
|
) |
|
(roi_heads): StandardROIHeads( |
|
(box_pooler): ROIPooler( |
|
(level_poolers): ModuleList( |
|
(0): ROIAlign(output_size=(7, 7), spatial_scale=0.25, sampling_ratio=0, aligned=True) |
|
(1): ROIAlign(output_size=(7, 7), spatial_scale=0.125, sampling_ratio=0, aligned=True) |
|
(2): ROIAlign(output_size=(7, 7), spatial_scale=0.0625, sampling_ratio=0, aligned=True) |
|
(3): ROIAlign(output_size=(7, 7), spatial_scale=0.03125, sampling_ratio=0, aligned=True) |
|
) |
|
) |
|
(box_head): FastRCNNConvFCHead( |
|
(flatten): Flatten(start_dim=1, end_dim=-1) |
|
(fc1): Linear(in_features=12544, out_features=1024, bias=True) |
|
(fc_relu1): ReLU() |
|
(fc2): Linear(in_features=1024, out_features=1024, bias=True) |
|
(fc_relu2): ReLU() |
|
) |
|
(box_predictor): FastRCNNOutputLayers( |
|
(cls_score): Linear(in_features=1024, out_features=3, bias=True) |
|
(bbox_pred): Linear(in_features=1024, out_features=8, bias=True) |
|
) |
|
(mask_pooler): ROIPooler( |
|
(level_poolers): ModuleList( |
|
(0): ROIAlign(output_size=(14, 14), spatial_scale=0.25, sampling_ratio=0, aligned=True) |
|
(1): ROIAlign(output_size=(14, 14), spatial_scale=0.125, sampling_ratio=0, aligned=True) |
|
(2): ROIAlign(output_size=(14, 14), spatial_scale=0.0625, sampling_ratio=0, aligned=True) |
|
(3): ROIAlign(output_size=(14, 14), spatial_scale=0.03125, sampling_ratio=0, aligned=True) |
|
) |
|
) |
|
(mask_head): MaskRCNNConvUpsampleHead( |
|
(mask_fcn1): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1) |
|
(activation): ReLU() |
|
) |
|
(mask_fcn2): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1) |
|
(activation): ReLU() |
|
) |
|
(mask_fcn3): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1) |
|
(activation): ReLU() |
|
) |
|
(mask_fcn4): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1) |
|
(activation): ReLU() |
|
) |
|
(deconv): ConvTranspose2d(256, 256, kernel_size=(2, 2), stride=(2, 2)) |
|
(deconv_relu): ReLU() |
|
(predictor): Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
) |
|
) |
|
[04/19 13:19:43] d2.data.dataset_mapper INFO: [DatasetMapper] Augmentations used in training: [ResizeShortestEdge(short_edge_length=(640, 672, 704, 736, 768, 800), max_size=1333, sample_style='choice'), RandomFlip(), RandomRotation(angle=[-90.0, 0.0])] |
|
[04/19 13:19:43] d2.data.datasets.coco INFO: Loaded 36 images in COCO format from /content/drive/MyDrive/layoutparser/dataset6/train/via_project_19Apr2023_15h0m_coco.json |
|
[04/19 13:19:43] d2.data.build INFO: Removed 6 images with no usable annotations. 30 images left. |
|
[04/19 13:19:43] d2.data.build INFO: Distribution of instances among all 2 categories: |
|
[36m| category | #instances | category | #instances | |
|
|:----------:|:-------------|:----------:|:-------------| |
|
| | 89 | | 0 | |
|
| | | | | |
|
| total | 89 | | |[0m |
|
[04/19 13:19:43] d2.data.build INFO: Using training sampler TrainingSampler |
|
[04/19 13:19:43] d2.data.common INFO: Serializing 30 elements to byte tensors and concatenating them all ... |
|
[04/19 13:19:43] d2.data.common INFO: Serialized dataset takes 0.01 MiB |
|
[04/19 13:19:43] d2.solver.build WARNING: SOLVER.STEPS contains values larger than SOLVER.MAX_ITER. These values will be ignored. |
|
[04/19 13:19:45] fvcore.common.checkpoint INFO: Loading checkpoint from /content/drive/MyDrive/layoutparser/modele/modele3_NP?/ |
|
[04/19 13:20:18] detectron2 INFO: Rank of current process: 0. World size: 1 |
|
[04/19 13:20:20] detectron2 INFO: Environment info: |
|
---------------------- ---------------------------------------------------------------- |
|
sys.platform linux |
|
Python 3.9.16 (main, Dec 7 2022, 01:11:51) [GCC 9.4.0] |
|
numpy 1.22.4 |
|
detectron2 0.4 @/usr/local/lib/python3.9/dist-packages/detectron2 |
|
Compiler GCC 9.4 |
|
CUDA compiler CUDA 11.8 |
|
detectron2 arch flags 7.5 |
|
DETECTRON2_ENV_MODULE <not set> |
|
PyTorch 2.0.0+cu118 @/usr/local/lib/python3.9/dist-packages/torch |
|
PyTorch debug build False |
|
GPU available True |
|
GPU 0 Tesla T4 (arch=7.5) |
|
CUDA_HOME /usr/local/cuda |
|
Pillow 9.5.0 |
|
torchvision 0.15.1+cu118 @/usr/local/lib/python3.9/dist-packages/torchvision |
|
torchvision arch flags 3.5, 5.0, 6.0, 7.0, 7.5, 8.0, 8.6 |
|
fvcore 0.1.3.post20210317 |
|
cv2 4.7.0 |
|
---------------------- ---------------------------------------------------------------- |
|
PyTorch built with: |
|
- GCC 9.3 |
|
- C++ Version: 201703 |
|
- Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications |
|
- Intel(R) MKL-DNN v2.7.3 (Git Hash 6dbeffbae1f23cbbeae17adb7b5b13f1f37c080e) |
|
- OpenMP 201511 (a.k.a. OpenMP 4.5) |
|
- LAPACK is enabled (usually provided by MKL) |
|
- NNPACK is enabled |
|
- CPU capability usage: AVX2 |
|
- CUDA Runtime 11.8 |
|
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90 |
|
- CuDNN 8.7 |
|
- Magma 2.6.1 |
|
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.0.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, |
|
|
|
[04/19 13:20:20] detectron2 INFO: Command line arguments: Namespace(config_file='/content/layout-model-training/config_LayoutParser_PrimaDataset.yaml', resume=False, eval_only=False, num_gpus=1, num_machines=1, machine_rank=0, dist_url='tcp://127.0.0.1:49152', opts=['OUTPUT_DIR', '/content/drive/MyDrive/layoutparser/modele', 'SOLVER.IMS_PER_BATCH', '2'], dataset_name='modele', json_annotation_train='/content/drive/MyDrive/layoutparser/dataset6/train/via_project_19Apr2023_15h0m_coco.json', image_path_train='/content/drive/MyDrive/layoutparser/dataset6/train', json_annotation_val='/content/drive/MyDrive/layoutparser/dataset6/val/via_project_19Apr2023_15h9m_coco.json', image_path_val='/content/drive/MyDrive/layoutparser/dataset6/val') |
|
[04/19 13:20:20] detectron2 INFO: Contents of args.config_file=/content/layout-model-training/config_LayoutParser_PrimaDataset.yaml: |
|
CUDNN_BENCHMARK: false |
|
DATALOADER: |
|
ASPECT_RATIO_GROUPING: true |
|
FILTER_EMPTY_ANNOTATIONS: true |
|
NUM_WORKERS: 4 |
|
REPEAT_THRESHOLD: 0.0 |
|
SAMPLER_TRAIN: TrainingSampler |
|
DATASETS: |
|
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000 |
|
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000 |
|
PROPOSAL_FILES_TEST: [] |
|
PROPOSAL_FILES_TRAIN: [] |
|
TEST: |
|
- prima-layout-val |
|
TRAIN: |
|
- prima-layout-train |
|
GLOBAL: |
|
HACK: 1.0 |
|
INPUT: |
|
CROP: |
|
ENABLED: false |
|
SIZE: |
|
- 0.9 |
|
- 0.9 |
|
TYPE: relative_range |
|
FORMAT: BGR |
|
MASK_FORMAT: polygon |
|
MAX_SIZE_TEST: 1333 |
|
MAX_SIZE_TRAIN: 1333 |
|
MIN_SIZE_TEST: 800 |
|
MIN_SIZE_TRAIN: |
|
- 640 |
|
- 672 |
|
- 704 |
|
- 736 |
|
- 768 |
|
- 800 |
|
MIN_SIZE_TRAIN_SAMPLING: choice |
|
MODEL: |
|
ANCHOR_GENERATOR: |
|
ANGLES: |
|
- - -90 |
|
- 0 |
|
- 90 |
|
ASPECT_RATIOS: |
|
- - 0.5 |
|
- 1.0 |
|
- 2.0 |
|
NAME: DefaultAnchorGenerator |
|
OFFSET: 0.0 |
|
SIZES: |
|
- - 32 |
|
- - 64 |
|
- - 128 |
|
- - 256 |
|
- - 512 |
|
BACKBONE: |
|
FREEZE_AT: 2 |
|
NAME: build_resnet_fpn_backbone |
|
DEVICE: cuda |
|
FPN: |
|
FUSE_TYPE: sum |
|
IN_FEATURES: |
|
- res2 |
|
- res3 |
|
- res4 |
|
- res5 |
|
NORM: '' |
|
OUT_CHANNELS: 256 |
|
KEYPOINT_ON: false |
|
LOAD_PROPOSALS: false |
|
MASK_ON: true |
|
META_ARCHITECTURE: GeneralizedRCNN |
|
PANOPTIC_FPN: |
|
COMBINE: |
|
ENABLED: true |
|
INSTANCES_CONFIDENCE_THRESH: 0.5 |
|
OVERLAP_THRESH: 0.5 |
|
STUFF_AREA_LIMIT: 4096 |
|
INSTANCE_LOSS_WEIGHT: 1.0 |
|
PIXEL_MEAN: |
|
- 103.53 |
|
- 116.28 |
|
- 123.675 |
|
PIXEL_STD: |
|
- 1.0 |
|
- 1.0 |
|
- 1.0 |
|
PROPOSAL_GENERATOR: |
|
MIN_SIZE: 0 |
|
NAME: RPN |
|
RESNETS: |
|
DEFORM_MODULATED: false |
|
DEFORM_NUM_GROUPS: 1 |
|
DEFORM_ON_PER_STAGE: |
|
- false |
|
- false |
|
- false |
|
- false |
|
DEPTH: 50 |
|
NORM: FrozenBN |
|
NUM_GROUPS: 1 |
|
OUT_FEATURES: |
|
- res2 |
|
- res3 |
|
- res4 |
|
- res5 |
|
RES2_OUT_CHANNELS: 256 |
|
RES5_DILATION: 1 |
|
STEM_OUT_CHANNELS: 64 |
|
STRIDE_IN_1X1: true |
|
WIDTH_PER_GROUP: 64 |
|
RETINANET: |
|
BBOX_REG_WEIGHTS: |
|
- 1.0 |
|
- 1.0 |
|
- 1.0 |
|
- 1.0 |
|
FOCAL_LOSS_ALPHA: 0.25 |
|
FOCAL_LOSS_GAMMA: 2.0 |
|
IN_FEATURES: |
|
- p3 |
|
- p4 |
|
- p5 |
|
- p6 |
|
- p7 |
|
IOU_LABELS: |
|
- 0 |
|
- -1 |
|
- 1 |
|
IOU_THRESHOLDS: |
|
- 0.4 |
|
- 0.5 |
|
NMS_THRESH_TEST: 0.5 |
|
NUM_CLASSES: 80 |
|
NUM_CONVS: 4 |
|
PRIOR_PROB: 0.01 |
|
SCORE_THRESH_TEST: 0.05 |
|
SMOOTH_L1_LOSS_BETA: 0.1 |
|
TOPK_CANDIDATES_TEST: 1000 |
|
ROI_BOX_CASCADE_HEAD: |
|
BBOX_REG_WEIGHTS: |
|
- - 10.0 |
|
- 10.0 |
|
- 5.0 |
|
- 5.0 |
|
- - 20.0 |
|
- 20.0 |
|
- 10.0 |
|
- 10.0 |
|
- - 30.0 |
|
- 30.0 |
|
- 15.0 |
|
- 15.0 |
|
IOUS: |
|
- 0.5 |
|
- 0.6 |
|
- 0.7 |
|
ROI_BOX_HEAD: |
|
BBOX_REG_WEIGHTS: |
|
- 10.0 |
|
- 10.0 |
|
- 5.0 |
|
- 5.0 |
|
CLS_AGNOSTIC_BBOX_REG: false |
|
CONV_DIM: 256 |
|
FC_DIM: 1024 |
|
NAME: FastRCNNConvFCHead |
|
NORM: '' |
|
NUM_CONV: 0 |
|
NUM_FC: 2 |
|
POOLER_RESOLUTION: 7 |
|
POOLER_SAMPLING_RATIO: 0 |
|
POOLER_TYPE: ROIAlignV2 |
|
SMOOTH_L1_BETA: 0.0 |
|
TRAIN_ON_PRED_BOXES: false |
|
ROI_HEADS: |
|
BATCH_SIZE_PER_IMAGE: 512 |
|
IN_FEATURES: |
|
- p2 |
|
- p3 |
|
- p4 |
|
- p5 |
|
IOU_LABELS: |
|
- 0 |
|
- 1 |
|
IOU_THRESHOLDS: |
|
- 0.5 |
|
NAME: StandardROIHeads |
|
NMS_THRESH_TEST: 0.5 |
|
NUM_CLASSES: 7 |
|
POSITIVE_FRACTION: 0.25 |
|
PROPOSAL_APPEND_GT: true |
|
SCORE_THRESH_TEST: 0.05 |
|
ROI_KEYPOINT_HEAD: |
|
CONV_DIMS: |
|
- 512 |
|
- 512 |
|
- 512 |
|
- 512 |
|
- 512 |
|
- 512 |
|
- 512 |
|
- 512 |
|
LOSS_WEIGHT: 1.0 |
|
MIN_KEYPOINTS_PER_IMAGE: 1 |
|
NAME: KRCNNConvDeconvUpsampleHead |
|
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true |
|
NUM_KEYPOINTS: 17 |
|
POOLER_RESOLUTION: 14 |
|
POOLER_SAMPLING_RATIO: 0 |
|
POOLER_TYPE: ROIAlignV2 |
|
ROI_MASK_HEAD: |
|
CLS_AGNOSTIC_MASK: false |
|
CONV_DIM: 256 |
|
NAME: MaskRCNNConvUpsampleHead |
|
NORM: '' |
|
NUM_CONV: 4 |
|
POOLER_RESOLUTION: 14 |
|
POOLER_SAMPLING_RATIO: 0 |
|
POOLER_TYPE: ROIAlignV2 |
|
RPN: |
|
BATCH_SIZE_PER_IMAGE: 256 |
|
BBOX_REG_WEIGHTS: |
|
- 1.0 |
|
- 1.0 |
|
- 1.0 |
|
- 1.0 |
|
BOUNDARY_THRESH: -1 |
|
HEAD_NAME: StandardRPNHead |
|
IN_FEATURES: |
|
- p2 |
|
- p3 |
|
- p4 |
|
- p5 |
|
- p6 |
|
IOU_LABELS: |
|
- 0 |
|
- -1 |
|
- 1 |
|
IOU_THRESHOLDS: |
|
- 0.3 |
|
- 0.7 |
|
LOSS_WEIGHT: 1.0 |
|
NMS_THRESH: 0.7 |
|
POSITIVE_FRACTION: 0.5 |
|
POST_NMS_TOPK_TEST: 1000 |
|
POST_NMS_TOPK_TRAIN: 1000 |
|
PRE_NMS_TOPK_TEST: 1000 |
|
PRE_NMS_TOPK_TRAIN: 2000 |
|
SMOOTH_L1_BETA: 0.0 |
|
SEM_SEG_HEAD: |
|
COMMON_STRIDE: 4 |
|
CONVS_DIM: 128 |
|
IGNORE_VALUE: 255 |
|
IN_FEATURES: |
|
- p2 |
|
- p3 |
|
- p4 |
|
- p5 |
|
LOSS_WEIGHT: 1.0 |
|
NAME: SemSegFPNHead |
|
NORM: GN |
|
NUM_CLASSES: 54 |
|
WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/modele_final.pth |
|
OUTPUT_DIR: ../outputs/prima/mask_rcnn_R_50_FPN_3x/ |
|
SEED: -1 |
|
SOLVER: |
|
BASE_LR: 0.00025 |
|
BIAS_LR_FACTOR: 1.0 |
|
CHECKPOINT_PERIOD: 50 |
|
CLIP_GRADIENTS: |
|
CLIP_TYPE: value |
|
CLIP_VALUE: 1.0 |
|
ENABLED: false |
|
NORM_TYPE: 2.0 |
|
GAMMA: 0.1 |
|
IMS_PER_BATCH: 2 |
|
LR_SCHEDULER_NAME: WarmupMultiStepLR |
|
MAX_ITER: 300 |
|
MOMENTUM: 0.9 |
|
NESTEROV: false |
|
STEPS: |
|
- 210000 |
|
- 250000 |
|
WARMUP_FACTOR: 0.001 |
|
WARMUP_ITERS: 1000 |
|
WARMUP_METHOD: linear |
|
WEIGHT_DECAY: 0.0001 |
|
WEIGHT_DECAY_BIAS: 0.0001 |
|
WEIGHT_DECAY_NORM: 0.0 |
|
TEST: |
|
AUG: |
|
ENABLED: false |
|
FLIP: true |
|
MAX_SIZE: 4000 |
|
MIN_SIZES: |
|
- 400 |
|
- 500 |
|
- 600 |
|
- 700 |
|
- 800 |
|
- 900 |
|
- 1000 |
|
- 1100 |
|
- 1200 |
|
DETECTIONS_PER_IMAGE: 100 |
|
EVAL_PERIOD: 0 |
|
EXPECTED_RESULTS: [] |
|
KEYPOINT_OKS_SIGMAS: [] |
|
PRECISE_BN: |
|
ENABLED: false |
|
NUM_ITER: 200 |
|
VERSION: 2 |
|
VIS_PERIOD: 0 |
|
|
|
[04/19 13:20:20] detectron2 INFO: Running with full config: |
|
CUDNN_BENCHMARK: False |
|
DATALOADER: |
|
ASPECT_RATIO_GROUPING: True |
|
FILTER_EMPTY_ANNOTATIONS: True |
|
NUM_WORKERS: 4 |
|
REPEAT_THRESHOLD: 0.0 |
|
SAMPLER_TRAIN: TrainingSampler |
|
DATASETS: |
|
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000 |
|
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000 |
|
PROPOSAL_FILES_TEST: () |
|
PROPOSAL_FILES_TRAIN: () |
|
TEST: ('modele-val',) |
|
TRAIN: ('modele-train',) |
|
GLOBAL: |
|
HACK: 1.0 |
|
INPUT: |
|
CROP: |
|
ENABLED: False |
|
SIZE: [0.9, 0.9] |
|
TYPE: relative_range |
|
FORMAT: BGR |
|
MASK_FORMAT: polygon |
|
MAX_SIZE_TEST: 1333 |
|
MAX_SIZE_TRAIN: 1333 |
|
MIN_SIZE_TEST: 800 |
|
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) |
|
MIN_SIZE_TRAIN_SAMPLING: choice |
|
RANDOM_FLIP: horizontal |
|
MODEL: |
|
ANCHOR_GENERATOR: |
|
ANGLES: [[-90, 0, 90]] |
|
ASPECT_RATIOS: [[0.5, 1.0, 2.0]] |
|
NAME: DefaultAnchorGenerator |
|
OFFSET: 0.0 |
|
SIZES: [[32], [64], [128], [256], [512]] |
|
BACKBONE: |
|
FREEZE_AT: 2 |
|
NAME: build_resnet_fpn_backbone |
|
DEVICE: cuda |
|
FPN: |
|
FUSE_TYPE: sum |
|
IN_FEATURES: ['res2', 'res3', 'res4', 'res5'] |
|
NORM: |
|
OUT_CHANNELS: 256 |
|
KEYPOINT_ON: False |
|
LOAD_PROPOSALS: False |
|
MASK_ON: True |
|
META_ARCHITECTURE: GeneralizedRCNN |
|
PANOPTIC_FPN: |
|
COMBINE: |
|
ENABLED: True |
|
INSTANCES_CONFIDENCE_THRESH: 0.5 |
|
OVERLAP_THRESH: 0.5 |
|
STUFF_AREA_LIMIT: 4096 |
|
INSTANCE_LOSS_WEIGHT: 1.0 |
|
PIXEL_MEAN: [103.53, 116.28, 123.675] |
|
PIXEL_STD: [1.0, 1.0, 1.0] |
|
PROPOSAL_GENERATOR: |
|
MIN_SIZE: 0 |
|
NAME: RPN |
|
RESNETS: |
|
DEFORM_MODULATED: False |
|
DEFORM_NUM_GROUPS: 1 |
|
DEFORM_ON_PER_STAGE: [False, False, False, False] |
|
DEPTH: 50 |
|
NORM: FrozenBN |
|
NUM_GROUPS: 1 |
|
OUT_FEATURES: ['res2', 'res3', 'res4', 'res5'] |
|
RES2_OUT_CHANNELS: 256 |
|
RES5_DILATION: 1 |
|
STEM_OUT_CHANNELS: 64 |
|
STRIDE_IN_1X1: True |
|
WIDTH_PER_GROUP: 64 |
|
RETINANET: |
|
BBOX_REG_LOSS_TYPE: smooth_l1 |
|
BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0) |
|
FOCAL_LOSS_ALPHA: 0.25 |
|
FOCAL_LOSS_GAMMA: 2.0 |
|
IN_FEATURES: ['p3', 'p4', 'p5', 'p6', 'p7'] |
|
IOU_LABELS: [0, -1, 1] |
|
IOU_THRESHOLDS: [0.4, 0.5] |
|
NMS_THRESH_TEST: 0.5 |
|
NORM: |
|
NUM_CLASSES: 80 |
|
NUM_CONVS: 4 |
|
PRIOR_PROB: 0.01 |
|
SCORE_THRESH_TEST: 0.05 |
|
SMOOTH_L1_LOSS_BETA: 0.1 |
|
TOPK_CANDIDATES_TEST: 1000 |
|
ROI_BOX_CASCADE_HEAD: |
|
BBOX_REG_WEIGHTS: ([10.0, 10.0, 5.0, 5.0], [20.0, 20.0, 10.0, 10.0], [30.0, 30.0, 15.0, 15.0]) |
|
IOUS: (0.5, 0.6, 0.7) |
|
ROI_BOX_HEAD: |
|
BBOX_REG_LOSS_TYPE: smooth_l1 |
|
BBOX_REG_LOSS_WEIGHT: 1.0 |
|
BBOX_REG_WEIGHTS: (10.0, 10.0, 5.0, 5.0) |
|
CLS_AGNOSTIC_BBOX_REG: False |
|
CONV_DIM: 256 |
|
FC_DIM: 1024 |
|
NAME: FastRCNNConvFCHead |
|
NORM: |
|
NUM_CONV: 0 |
|
NUM_FC: 2 |
|
POOLER_RESOLUTION: 7 |
|
POOLER_SAMPLING_RATIO: 0 |
|
POOLER_TYPE: ROIAlignV2 |
|
SMOOTH_L1_BETA: 0.0 |
|
TRAIN_ON_PRED_BOXES: False |
|
ROI_HEADS: |
|
BATCH_SIZE_PER_IMAGE: 512 |
|
IN_FEATURES: ['p2', 'p3', 'p4', 'p5'] |
|
IOU_LABELS: [0, 1] |
|
IOU_THRESHOLDS: [0.5] |
|
NAME: StandardROIHeads |
|
NMS_THRESH_TEST: 0.5 |
|
NUM_CLASSES: 2 |
|
POSITIVE_FRACTION: 0.25 |
|
PROPOSAL_APPEND_GT: True |
|
SCORE_THRESH_TEST: 0.05 |
|
ROI_KEYPOINT_HEAD: |
|
CONV_DIMS: (512, 512, 512, 512, 512, 512, 512, 512) |
|
LOSS_WEIGHT: 1.0 |
|
MIN_KEYPOINTS_PER_IMAGE: 1 |
|
NAME: KRCNNConvDeconvUpsampleHead |
|
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: True |
|
NUM_KEYPOINTS: 17 |
|
POOLER_RESOLUTION: 14 |
|
POOLER_SAMPLING_RATIO: 0 |
|
POOLER_TYPE: ROIAlignV2 |
|
ROI_MASK_HEAD: |
|
CLS_AGNOSTIC_MASK: False |
|
CONV_DIM: 256 |
|
NAME: MaskRCNNConvUpsampleHead |
|
NORM: |
|
NUM_CONV: 4 |
|
POOLER_RESOLUTION: 14 |
|
POOLER_SAMPLING_RATIO: 0 |
|
POOLER_TYPE: ROIAlignV2 |
|
RPN: |
|
BATCH_SIZE_PER_IMAGE: 256 |
|
BBOX_REG_LOSS_TYPE: smooth_l1 |
|
BBOX_REG_LOSS_WEIGHT: 1.0 |
|
BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0) |
|
BOUNDARY_THRESH: -1 |
|
HEAD_NAME: StandardRPNHead |
|
IN_FEATURES: ['p2', 'p3', 'p4', 'p5', 'p6'] |
|
IOU_LABELS: [0, -1, 1] |
|
IOU_THRESHOLDS: [0.3, 0.7] |
|
LOSS_WEIGHT: 1.0 |
|
NMS_THRESH: 0.7 |
|
POSITIVE_FRACTION: 0.5 |
|
POST_NMS_TOPK_TEST: 1000 |
|
POST_NMS_TOPK_TRAIN: 1000 |
|
PRE_NMS_TOPK_TEST: 1000 |
|
PRE_NMS_TOPK_TRAIN: 2000 |
|
SMOOTH_L1_BETA: 0.0 |
|
SEM_SEG_HEAD: |
|
COMMON_STRIDE: 4 |
|
CONVS_DIM: 128 |
|
IGNORE_VALUE: 255 |
|
IN_FEATURES: ['p2', 'p3', 'p4', 'p5'] |
|
LOSS_WEIGHT: 1.0 |
|
NAME: SemSegFPNHead |
|
NORM: GN |
|
NUM_CLASSES: 54 |
|
WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/modele_final.pth |
|
OUTPUT_DIR: /content/drive/MyDrive/layoutparser/modele |
|
SEED: -1 |
|
SOLVER: |
|
AMP: |
|
ENABLED: False |
|
BASE_LR: 0.00025 |
|
BIAS_LR_FACTOR: 1.0 |
|
CHECKPOINT_PERIOD: 50 |
|
CLIP_GRADIENTS: |
|
CLIP_TYPE: value |
|
CLIP_VALUE: 1.0 |
|
ENABLED: False |
|
NORM_TYPE: 2.0 |
|
GAMMA: 0.1 |
|
IMS_PER_BATCH: 2 |
|
LR_SCHEDULER_NAME: WarmupMultiStepLR |
|
MAX_ITER: 300 |
|
MOMENTUM: 0.9 |
|
NESTEROV: False |
|
REFERENCE_WORLD_SIZE: 0 |
|
STEPS: (210000, 250000) |
|
WARMUP_FACTOR: 0.001 |
|
WARMUP_ITERS: 1000 |
|
WARMUP_METHOD: linear |
|
WEIGHT_DECAY: 0.0001 |
|
WEIGHT_DECAY_BIAS: 0.0001 |
|
WEIGHT_DECAY_NORM: 0.0 |
|
TEST: |
|
AUG: |
|
ENABLED: False |
|
FLIP: True |
|
MAX_SIZE: 4000 |
|
MIN_SIZES: (400, 500, 600, 700, 800, 900, 1000, 1100, 1200) |
|
DETECTIONS_PER_IMAGE: 100 |
|
EVAL_PERIOD: 0 |
|
EXPECTED_RESULTS: [] |
|
KEYPOINT_OKS_SIGMAS: [] |
|
PRECISE_BN: |
|
ENABLED: False |
|
NUM_ITER: 200 |
|
VERSION: 2 |
|
VIS_PERIOD: 0 |
|
[04/19 13:20:20] detectron2 INFO: Full config saved to /content/drive/MyDrive/layoutparser/modele/config.yaml |
|
[04/19 13:20:20] d2.utils.env INFO: Using a generated random seed 20261058 |
|
[04/19 13:20:22] d2.engine.defaults INFO: Model: |
|
GeneralizedRCNN( |
|
(backbone): FPN( |
|
(fpn_lateral2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1)) |
|
(fpn_output2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) |
|
(fpn_lateral3): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1)) |
|
(fpn_output3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) |
|
(fpn_lateral4): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1)) |
|
(fpn_output4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) |
|
(fpn_lateral5): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1)) |
|
(fpn_output5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) |
|
(top_block): LastLevelMaxPool() |
|
(bottom_up): ResNet( |
|
(stem): BasicStem( |
|
(conv1): Conv2d( |
|
3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) |
|
) |
|
) |
|
(res2): Sequential( |
|
(0): BottleneckBlock( |
|
(shortcut): Conv2d( |
|
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv1): Conv2d( |
|
64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
) |
|
(1): BottleneckBlock( |
|
(conv1): Conv2d( |
|
256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
) |
|
(2): BottleneckBlock( |
|
(conv1): Conv2d( |
|
256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
) |
|
) |
|
(res3): Sequential( |
|
(0): BottleneckBlock( |
|
(shortcut): Conv2d( |
|
256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
(conv1): Conv2d( |
|
256, 128, kernel_size=(1, 1), stride=(2, 2), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
) |
|
(1): BottleneckBlock( |
|
(conv1): Conv2d( |
|
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
) |
|
(2): BottleneckBlock( |
|
(conv1): Conv2d( |
|
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
) |
|
(3): BottleneckBlock( |
|
(conv1): Conv2d( |
|
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
) |
|
) |
|
(res4): Sequential( |
|
(0): BottleneckBlock( |
|
(shortcut): Conv2d( |
|
512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) |
|
) |
|
(conv1): Conv2d( |
|
512, 256, kernel_size=(1, 1), stride=(2, 2), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) |
|
) |
|
) |
|
(1): BottleneckBlock( |
|
(conv1): Conv2d( |
|
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) |
|
) |
|
) |
|
(2): BottleneckBlock( |
|
(conv1): Conv2d( |
|
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) |
|
) |
|
) |
|
(3): BottleneckBlock( |
|
(conv1): Conv2d( |
|
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) |
|
) |
|
) |
|
(4): BottleneckBlock( |
|
(conv1): Conv2d( |
|
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) |
|
) |
|
) |
|
(5): BottleneckBlock( |
|
(conv1): Conv2d( |
|
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) |
|
) |
|
) |
|
) |
|
(res5): Sequential( |
|
(0): BottleneckBlock( |
|
(shortcut): Conv2d( |
|
1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05) |
|
) |
|
(conv1): Conv2d( |
|
1024, 512, kernel_size=(1, 1), stride=(2, 2), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05) |
|
) |
|
) |
|
(1): BottleneckBlock( |
|
(conv1): Conv2d( |
|
2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05) |
|
) |
|
) |
|
(2): BottleneckBlock( |
|
(conv1): Conv2d( |
|
2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05) |
|
) |
|
) |
|
) |
|
) |
|
) |
|
(proposal_generator): RPN( |
|
(rpn_head): StandardRPNHead( |
|
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) |
|
(objectness_logits): Conv2d(256, 3, kernel_size=(1, 1), stride=(1, 1)) |
|
(anchor_deltas): Conv2d(256, 12, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
(anchor_generator): DefaultAnchorGenerator( |
|
(cell_anchors): BufferList() |
|
) |
|
) |
|
(roi_heads): StandardROIHeads( |
|
(box_pooler): ROIPooler( |
|
(level_poolers): ModuleList( |
|
(0): ROIAlign(output_size=(7, 7), spatial_scale=0.25, sampling_ratio=0, aligned=True) |
|
(1): ROIAlign(output_size=(7, 7), spatial_scale=0.125, sampling_ratio=0, aligned=True) |
|
(2): ROIAlign(output_size=(7, 7), spatial_scale=0.0625, sampling_ratio=0, aligned=True) |
|
(3): ROIAlign(output_size=(7, 7), spatial_scale=0.03125, sampling_ratio=0, aligned=True) |
|
) |
|
) |
|
(box_head): FastRCNNConvFCHead( |
|
(flatten): Flatten(start_dim=1, end_dim=-1) |
|
(fc1): Linear(in_features=12544, out_features=1024, bias=True) |
|
(fc_relu1): ReLU() |
|
(fc2): Linear(in_features=1024, out_features=1024, bias=True) |
|
(fc_relu2): ReLU() |
|
) |
|
(box_predictor): FastRCNNOutputLayers( |
|
(cls_score): Linear(in_features=1024, out_features=3, bias=True) |
|
(bbox_pred): Linear(in_features=1024, out_features=8, bias=True) |
|
) |
|
(mask_pooler): ROIPooler( |
|
(level_poolers): ModuleList( |
|
(0): ROIAlign(output_size=(14, 14), spatial_scale=0.25, sampling_ratio=0, aligned=True) |
|
(1): ROIAlign(output_size=(14, 14), spatial_scale=0.125, sampling_ratio=0, aligned=True) |
|
(2): ROIAlign(output_size=(14, 14), spatial_scale=0.0625, sampling_ratio=0, aligned=True) |
|
(3): ROIAlign(output_size=(14, 14), spatial_scale=0.03125, sampling_ratio=0, aligned=True) |
|
) |
|
) |
|
(mask_head): MaskRCNNConvUpsampleHead( |
|
(mask_fcn1): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1) |
|
(activation): ReLU() |
|
) |
|
(mask_fcn2): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1) |
|
(activation): ReLU() |
|
) |
|
(mask_fcn3): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1) |
|
(activation): ReLU() |
|
) |
|
(mask_fcn4): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1) |
|
(activation): ReLU() |
|
) |
|
(deconv): ConvTranspose2d(256, 256, kernel_size=(2, 2), stride=(2, 2)) |
|
(deconv_relu): ReLU() |
|
(predictor): Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
) |
|
) |
|
[04/19 13:20:22] d2.data.dataset_mapper INFO: [DatasetMapper] Augmentations used in training: [ResizeShortestEdge(short_edge_length=(640, 672, 704, 736, 768, 800), max_size=1333, sample_style='choice'), RandomFlip(), RandomRotation(angle=[-90.0, 0.0])] |
|
[04/19 13:20:22] d2.data.datasets.coco INFO: Loaded 36 images in COCO format from /content/drive/MyDrive/layoutparser/dataset6/train/via_project_19Apr2023_15h0m_coco.json |
|
[04/19 13:20:22] d2.data.build INFO: Removed 6 images with no usable annotations. 30 images left. |
|
[04/19 13:20:22] d2.data.build INFO: Distribution of instances among all 2 categories: |
|
[36m| category | #instances | category | #instances | |
|
|:----------:|:-------------|:----------:|:-------------| |
|
| | 89 | | 0 | |
|
| | | | | |
|
| total | 89 | | |[0m |
|
[04/19 13:20:22] d2.data.build INFO: Using training sampler TrainingSampler |
|
[04/19 13:20:22] d2.data.common INFO: Serializing 30 elements to byte tensors and concatenating them all ... |
|
[04/19 13:20:22] d2.data.common INFO: Serialized dataset takes 0.01 MiB |
|
[04/19 13:20:22] d2.solver.build WARNING: SOLVER.STEPS contains values larger than SOLVER.MAX_ITER. These values will be ignored. |
|
[04/19 13:20:24] fvcore.common.checkpoint INFO: Loading checkpoint from /content/drive/MyDrive/layoutparser/modele/modele3_NP?/modele_final.pth |
|
[04/19 13:21:19] detectron2 INFO: Rank of current process: 0. World size: 1 |
|
[04/19 13:21:20] detectron2 INFO: Environment info: |
|
---------------------- ---------------------------------------------------------------- |
|
sys.platform linux |
|
Python 3.9.16 (main, Dec 7 2022, 01:11:51) [GCC 9.4.0] |
|
numpy 1.22.4 |
|
detectron2 0.4 @/usr/local/lib/python3.9/dist-packages/detectron2 |
|
Compiler GCC 9.4 |
|
CUDA compiler CUDA 11.8 |
|
detectron2 arch flags 7.5 |
|
DETECTRON2_ENV_MODULE <not set> |
|
PyTorch 2.0.0+cu118 @/usr/local/lib/python3.9/dist-packages/torch |
|
PyTorch debug build False |
|
GPU available True |
|
GPU 0 Tesla T4 (arch=7.5) |
|
CUDA_HOME /usr/local/cuda |
|
Pillow 9.5.0 |
|
torchvision 0.15.1+cu118 @/usr/local/lib/python3.9/dist-packages/torchvision |
|
torchvision arch flags 3.5, 5.0, 6.0, 7.0, 7.5, 8.0, 8.6 |
|
fvcore 0.1.3.post20210317 |
|
cv2 4.7.0 |
|
---------------------- ---------------------------------------------------------------- |
|
PyTorch built with: |
|
- GCC 9.3 |
|
- C++ Version: 201703 |
|
- Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications |
|
- Intel(R) MKL-DNN v2.7.3 (Git Hash 6dbeffbae1f23cbbeae17adb7b5b13f1f37c080e) |
|
- OpenMP 201511 (a.k.a. OpenMP 4.5) |
|
- LAPACK is enabled (usually provided by MKL) |
|
- NNPACK is enabled |
|
- CPU capability usage: AVX2 |
|
- CUDA Runtime 11.8 |
|
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90 |
|
- CuDNN 8.7 |
|
- Magma 2.6.1 |
|
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.0.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, |
|
|
|
[04/19 13:21:20] detectron2 INFO: Command line arguments: Namespace(config_file='/content/layout-model-training/config_LayoutParser_PrimaDataset.yaml', resume=False, eval_only=False, num_gpus=1, num_machines=1, machine_rank=0, dist_url='tcp://127.0.0.1:49152', opts=['OUTPUT_DIR', '/content/drive/MyDrive/layoutparser/modele', 'SOLVER.IMS_PER_BATCH', '2'], dataset_name='modele', json_annotation_train='/content/drive/MyDrive/layoutparser/dataset6/train/via_project_19Apr2023_15h0m_coco.json', image_path_train='/content/drive/MyDrive/layoutparser/dataset6/train', json_annotation_val='/content/drive/MyDrive/layoutparser/dataset6/val/via_project_19Apr2023_15h9m_coco.json', image_path_val='/content/drive/MyDrive/layoutparser/dataset6/val') |
|
[04/19 13:21:20] detectron2 INFO: Contents of args.config_file=/content/layout-model-training/config_LayoutParser_PrimaDataset.yaml: |
|
CUDNN_BENCHMARK: false |
|
DATALOADER: |
|
ASPECT_RATIO_GROUPING: true |
|
FILTER_EMPTY_ANNOTATIONS: true |
|
NUM_WORKERS: 4 |
|
REPEAT_THRESHOLD: 0.0 |
|
SAMPLER_TRAIN: TrainingSampler |
|
DATASETS: |
|
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000 |
|
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000 |
|
PROPOSAL_FILES_TEST: [] |
|
PROPOSAL_FILES_TRAIN: [] |
|
TEST: |
|
- prima-layout-val |
|
TRAIN: |
|
- prima-layout-train |
|
GLOBAL: |
|
HACK: 1.0 |
|
INPUT: |
|
CROP: |
|
ENABLED: false |
|
SIZE: |
|
- 0.9 |
|
- 0.9 |
|
TYPE: relative_range |
|
FORMAT: BGR |
|
MASK_FORMAT: polygon |
|
MAX_SIZE_TEST: 1333 |
|
MAX_SIZE_TRAIN: 1333 |
|
MIN_SIZE_TEST: 800 |
|
MIN_SIZE_TRAIN: |
|
- 640 |
|
- 672 |
|
- 704 |
|
- 736 |
|
- 768 |
|
- 800 |
|
MIN_SIZE_TRAIN_SAMPLING: choice |
|
MODEL: |
|
ANCHOR_GENERATOR: |
|
ANGLES: |
|
- - -90 |
|
- 0 |
|
- 90 |
|
ASPECT_RATIOS: |
|
- - 0.5 |
|
- 1.0 |
|
- 2.0 |
|
NAME: DefaultAnchorGenerator |
|
OFFSET: 0.0 |
|
SIZES: |
|
- - 32 |
|
- - 64 |
|
- - 128 |
|
- - 256 |
|
- - 512 |
|
BACKBONE: |
|
FREEZE_AT: 2 |
|
NAME: build_resnet_fpn_backbone |
|
DEVICE: cuda |
|
FPN: |
|
FUSE_TYPE: sum |
|
IN_FEATURES: |
|
- res2 |
|
- res3 |
|
- res4 |
|
- res5 |
|
NORM: '' |
|
OUT_CHANNELS: 256 |
|
KEYPOINT_ON: false |
|
LOAD_PROPOSALS: false |
|
MASK_ON: true |
|
META_ARCHITECTURE: GeneralizedRCNN |
|
PANOPTIC_FPN: |
|
COMBINE: |
|
ENABLED: true |
|
INSTANCES_CONFIDENCE_THRESH: 0.5 |
|
OVERLAP_THRESH: 0.5 |
|
STUFF_AREA_LIMIT: 4096 |
|
INSTANCE_LOSS_WEIGHT: 1.0 |
|
PIXEL_MEAN: |
|
- 103.53 |
|
- 116.28 |
|
- 123.675 |
|
PIXEL_STD: |
|
- 1.0 |
|
- 1.0 |
|
- 1.0 |
|
PROPOSAL_GENERATOR: |
|
MIN_SIZE: 0 |
|
NAME: RPN |
|
RESNETS: |
|
DEFORM_MODULATED: false |
|
DEFORM_NUM_GROUPS: 1 |
|
DEFORM_ON_PER_STAGE: |
|
- false |
|
- false |
|
- false |
|
- false |
|
DEPTH: 50 |
|
NORM: FrozenBN |
|
NUM_GROUPS: 1 |
|
OUT_FEATURES: |
|
- res2 |
|
- res3 |
|
- res4 |
|
- res5 |
|
RES2_OUT_CHANNELS: 256 |
|
RES5_DILATION: 1 |
|
STEM_OUT_CHANNELS: 64 |
|
STRIDE_IN_1X1: true |
|
WIDTH_PER_GROUP: 64 |
|
RETINANET: |
|
BBOX_REG_WEIGHTS: |
|
- 1.0 |
|
- 1.0 |
|
- 1.0 |
|
- 1.0 |
|
FOCAL_LOSS_ALPHA: 0.25 |
|
FOCAL_LOSS_GAMMA: 2.0 |
|
IN_FEATURES: |
|
- p3 |
|
- p4 |
|
- p5 |
|
- p6 |
|
- p7 |
|
IOU_LABELS: |
|
- 0 |
|
- -1 |
|
- 1 |
|
IOU_THRESHOLDS: |
|
- 0.4 |
|
- 0.5 |
|
NMS_THRESH_TEST: 0.5 |
|
NUM_CLASSES: 80 |
|
NUM_CONVS: 4 |
|
PRIOR_PROB: 0.01 |
|
SCORE_THRESH_TEST: 0.05 |
|
SMOOTH_L1_LOSS_BETA: 0.1 |
|
TOPK_CANDIDATES_TEST: 1000 |
|
ROI_BOX_CASCADE_HEAD: |
|
BBOX_REG_WEIGHTS: |
|
- - 10.0 |
|
- 10.0 |
|
- 5.0 |
|
- 5.0 |
|
- - 20.0 |
|
- 20.0 |
|
- 10.0 |
|
- 10.0 |
|
- - 30.0 |
|
- 30.0 |
|
- 15.0 |
|
- 15.0 |
|
IOUS: |
|
- 0.5 |
|
- 0.6 |
|
- 0.7 |
|
ROI_BOX_HEAD: |
|
BBOX_REG_WEIGHTS: |
|
- 10.0 |
|
- 10.0 |
|
- 5.0 |
|
- 5.0 |
|
CLS_AGNOSTIC_BBOX_REG: false |
|
CONV_DIM: 256 |
|
FC_DIM: 1024 |
|
NAME: FastRCNNConvFCHead |
|
NORM: '' |
|
NUM_CONV: 0 |
|
NUM_FC: 2 |
|
POOLER_RESOLUTION: 7 |
|
POOLER_SAMPLING_RATIO: 0 |
|
POOLER_TYPE: ROIAlignV2 |
|
SMOOTH_L1_BETA: 0.0 |
|
TRAIN_ON_PRED_BOXES: false |
|
ROI_HEADS: |
|
BATCH_SIZE_PER_IMAGE: 512 |
|
IN_FEATURES: |
|
- p2 |
|
- p3 |
|
- p4 |
|
- p5 |
|
IOU_LABELS: |
|
- 0 |
|
- 1 |
|
IOU_THRESHOLDS: |
|
- 0.5 |
|
NAME: StandardROIHeads |
|
NMS_THRESH_TEST: 0.5 |
|
NUM_CLASSES: 7 |
|
POSITIVE_FRACTION: 0.25 |
|
PROPOSAL_APPEND_GT: true |
|
SCORE_THRESH_TEST: 0.05 |
|
ROI_KEYPOINT_HEAD: |
|
CONV_DIMS: |
|
- 512 |
|
- 512 |
|
- 512 |
|
- 512 |
|
- 512 |
|
- 512 |
|
- 512 |
|
- 512 |
|
LOSS_WEIGHT: 1.0 |
|
MIN_KEYPOINTS_PER_IMAGE: 1 |
|
NAME: KRCNNConvDeconvUpsampleHead |
|
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true |
|
NUM_KEYPOINTS: 17 |
|
POOLER_RESOLUTION: 14 |
|
POOLER_SAMPLING_RATIO: 0 |
|
POOLER_TYPE: ROIAlignV2 |
|
ROI_MASK_HEAD: |
|
CLS_AGNOSTIC_MASK: false |
|
CONV_DIM: 256 |
|
NAME: MaskRCNNConvUpsampleHead |
|
NORM: '' |
|
NUM_CONV: 4 |
|
POOLER_RESOLUTION: 14 |
|
POOLER_SAMPLING_RATIO: 0 |
|
POOLER_TYPE: ROIAlignV2 |
|
RPN: |
|
BATCH_SIZE_PER_IMAGE: 256 |
|
BBOX_REG_WEIGHTS: |
|
- 1.0 |
|
- 1.0 |
|
- 1.0 |
|
- 1.0 |
|
BOUNDARY_THRESH: -1 |
|
HEAD_NAME: StandardRPNHead |
|
IN_FEATURES: |
|
- p2 |
|
- p3 |
|
- p4 |
|
- p5 |
|
- p6 |
|
IOU_LABELS: |
|
- 0 |
|
- -1 |
|
- 1 |
|
IOU_THRESHOLDS: |
|
- 0.3 |
|
- 0.7 |
|
LOSS_WEIGHT: 1.0 |
|
NMS_THRESH: 0.7 |
|
POSITIVE_FRACTION: 0.5 |
|
POST_NMS_TOPK_TEST: 1000 |
|
POST_NMS_TOPK_TRAIN: 1000 |
|
PRE_NMS_TOPK_TEST: 1000 |
|
PRE_NMS_TOPK_TRAIN: 2000 |
|
SMOOTH_L1_BETA: 0.0 |
|
SEM_SEG_HEAD: |
|
COMMON_STRIDE: 4 |
|
CONVS_DIM: 128 |
|
IGNORE_VALUE: 255 |
|
IN_FEATURES: |
|
- p2 |
|
- p3 |
|
- p4 |
|
- p5 |
|
LOSS_WEIGHT: 1.0 |
|
NAME: SemSegFPNHead |
|
NORM: GN |
|
NUM_CLASSES: 54 |
|
WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/model_final.pth |
|
OUTPUT_DIR: ../outputs/prima/mask_rcnn_R_50_FPN_3x/ |
|
SEED: -1 |
|
SOLVER: |
|
BASE_LR: 0.00025 |
|
BIAS_LR_FACTOR: 1.0 |
|
CHECKPOINT_PERIOD: 50 |
|
CLIP_GRADIENTS: |
|
CLIP_TYPE: value |
|
CLIP_VALUE: 1.0 |
|
ENABLED: false |
|
NORM_TYPE: 2.0 |
|
GAMMA: 0.1 |
|
IMS_PER_BATCH: 2 |
|
LR_SCHEDULER_NAME: WarmupMultiStepLR |
|
MAX_ITER: 300 |
|
MOMENTUM: 0.9 |
|
NESTEROV: false |
|
STEPS: |
|
- 210000 |
|
- 250000 |
|
WARMUP_FACTOR: 0.001 |
|
WARMUP_ITERS: 1000 |
|
WARMUP_METHOD: linear |
|
WEIGHT_DECAY: 0.0001 |
|
WEIGHT_DECAY_BIAS: 0.0001 |
|
WEIGHT_DECAY_NORM: 0.0 |
|
TEST: |
|
AUG: |
|
ENABLED: false |
|
FLIP: true |
|
MAX_SIZE: 4000 |
|
MIN_SIZES: |
|
- 400 |
|
- 500 |
|
- 600 |
|
- 700 |
|
- 800 |
|
- 900 |
|
- 1000 |
|
- 1100 |
|
- 1200 |
|
DETECTIONS_PER_IMAGE: 100 |
|
EVAL_PERIOD: 0 |
|
EXPECTED_RESULTS: [] |
|
KEYPOINT_OKS_SIGMAS: [] |
|
PRECISE_BN: |
|
ENABLED: false |
|
NUM_ITER: 200 |
|
VERSION: 2 |
|
VIS_PERIOD: 0 |
|
|
|
[04/19 13:21:20] detectron2 INFO: Running with full config: |
|
CUDNN_BENCHMARK: False |
|
DATALOADER: |
|
ASPECT_RATIO_GROUPING: True |
|
FILTER_EMPTY_ANNOTATIONS: True |
|
NUM_WORKERS: 4 |
|
REPEAT_THRESHOLD: 0.0 |
|
SAMPLER_TRAIN: TrainingSampler |
|
DATASETS: |
|
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000 |
|
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000 |
|
PROPOSAL_FILES_TEST: () |
|
PROPOSAL_FILES_TRAIN: () |
|
TEST: ('modele-val',) |
|
TRAIN: ('modele-train',) |
|
GLOBAL: |
|
HACK: 1.0 |
|
INPUT: |
|
CROP: |
|
ENABLED: False |
|
SIZE: [0.9, 0.9] |
|
TYPE: relative_range |
|
FORMAT: BGR |
|
MASK_FORMAT: polygon |
|
MAX_SIZE_TEST: 1333 |
|
MAX_SIZE_TRAIN: 1333 |
|
MIN_SIZE_TEST: 800 |
|
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) |
|
MIN_SIZE_TRAIN_SAMPLING: choice |
|
RANDOM_FLIP: horizontal |
|
MODEL: |
|
ANCHOR_GENERATOR: |
|
ANGLES: [[-90, 0, 90]] |
|
ASPECT_RATIOS: [[0.5, 1.0, 2.0]] |
|
NAME: DefaultAnchorGenerator |
|
OFFSET: 0.0 |
|
SIZES: [[32], [64], [128], [256], [512]] |
|
BACKBONE: |
|
FREEZE_AT: 2 |
|
NAME: build_resnet_fpn_backbone |
|
DEVICE: cuda |
|
FPN: |
|
FUSE_TYPE: sum |
|
IN_FEATURES: ['res2', 'res3', 'res4', 'res5'] |
|
NORM: |
|
OUT_CHANNELS: 256 |
|
KEYPOINT_ON: False |
|
LOAD_PROPOSALS: False |
|
MASK_ON: True |
|
META_ARCHITECTURE: GeneralizedRCNN |
|
PANOPTIC_FPN: |
|
COMBINE: |
|
ENABLED: True |
|
INSTANCES_CONFIDENCE_THRESH: 0.5 |
|
OVERLAP_THRESH: 0.5 |
|
STUFF_AREA_LIMIT: 4096 |
|
INSTANCE_LOSS_WEIGHT: 1.0 |
|
PIXEL_MEAN: [103.53, 116.28, 123.675] |
|
PIXEL_STD: [1.0, 1.0, 1.0] |
|
PROPOSAL_GENERATOR: |
|
MIN_SIZE: 0 |
|
NAME: RPN |
|
RESNETS: |
|
DEFORM_MODULATED: False |
|
DEFORM_NUM_GROUPS: 1 |
|
DEFORM_ON_PER_STAGE: [False, False, False, False] |
|
DEPTH: 50 |
|
NORM: FrozenBN |
|
NUM_GROUPS: 1 |
|
OUT_FEATURES: ['res2', 'res3', 'res4', 'res5'] |
|
RES2_OUT_CHANNELS: 256 |
|
RES5_DILATION: 1 |
|
STEM_OUT_CHANNELS: 64 |
|
STRIDE_IN_1X1: True |
|
WIDTH_PER_GROUP: 64 |
|
RETINANET: |
|
BBOX_REG_LOSS_TYPE: smooth_l1 |
|
BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0) |
|
FOCAL_LOSS_ALPHA: 0.25 |
|
FOCAL_LOSS_GAMMA: 2.0 |
|
IN_FEATURES: ['p3', 'p4', 'p5', 'p6', 'p7'] |
|
IOU_LABELS: [0, -1, 1] |
|
IOU_THRESHOLDS: [0.4, 0.5] |
|
NMS_THRESH_TEST: 0.5 |
|
NORM: |
|
NUM_CLASSES: 80 |
|
NUM_CONVS: 4 |
|
PRIOR_PROB: 0.01 |
|
SCORE_THRESH_TEST: 0.05 |
|
SMOOTH_L1_LOSS_BETA: 0.1 |
|
TOPK_CANDIDATES_TEST: 1000 |
|
ROI_BOX_CASCADE_HEAD: |
|
BBOX_REG_WEIGHTS: ([10.0, 10.0, 5.0, 5.0], [20.0, 20.0, 10.0, 10.0], [30.0, 30.0, 15.0, 15.0]) |
|
IOUS: (0.5, 0.6, 0.7) |
|
ROI_BOX_HEAD: |
|
BBOX_REG_LOSS_TYPE: smooth_l1 |
|
BBOX_REG_LOSS_WEIGHT: 1.0 |
|
BBOX_REG_WEIGHTS: (10.0, 10.0, 5.0, 5.0) |
|
CLS_AGNOSTIC_BBOX_REG: False |
|
CONV_DIM: 256 |
|
FC_DIM: 1024 |
|
NAME: FastRCNNConvFCHead |
|
NORM: |
|
NUM_CONV: 0 |
|
NUM_FC: 2 |
|
POOLER_RESOLUTION: 7 |
|
POOLER_SAMPLING_RATIO: 0 |
|
POOLER_TYPE: ROIAlignV2 |
|
SMOOTH_L1_BETA: 0.0 |
|
TRAIN_ON_PRED_BOXES: False |
|
ROI_HEADS: |
|
BATCH_SIZE_PER_IMAGE: 512 |
|
IN_FEATURES: ['p2', 'p3', 'p4', 'p5'] |
|
IOU_LABELS: [0, 1] |
|
IOU_THRESHOLDS: [0.5] |
|
NAME: StandardROIHeads |
|
NMS_THRESH_TEST: 0.5 |
|
NUM_CLASSES: 2 |
|
POSITIVE_FRACTION: 0.25 |
|
PROPOSAL_APPEND_GT: True |
|
SCORE_THRESH_TEST: 0.05 |
|
ROI_KEYPOINT_HEAD: |
|
CONV_DIMS: (512, 512, 512, 512, 512, 512, 512, 512) |
|
LOSS_WEIGHT: 1.0 |
|
MIN_KEYPOINTS_PER_IMAGE: 1 |
|
NAME: KRCNNConvDeconvUpsampleHead |
|
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: True |
|
NUM_KEYPOINTS: 17 |
|
POOLER_RESOLUTION: 14 |
|
POOLER_SAMPLING_RATIO: 0 |
|
POOLER_TYPE: ROIAlignV2 |
|
ROI_MASK_HEAD: |
|
CLS_AGNOSTIC_MASK: False |
|
CONV_DIM: 256 |
|
NAME: MaskRCNNConvUpsampleHead |
|
NORM: |
|
NUM_CONV: 4 |
|
POOLER_RESOLUTION: 14 |
|
POOLER_SAMPLING_RATIO: 0 |
|
POOLER_TYPE: ROIAlignV2 |
|
RPN: |
|
BATCH_SIZE_PER_IMAGE: 256 |
|
BBOX_REG_LOSS_TYPE: smooth_l1 |
|
BBOX_REG_LOSS_WEIGHT: 1.0 |
|
BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0) |
|
BOUNDARY_THRESH: -1 |
|
HEAD_NAME: StandardRPNHead |
|
IN_FEATURES: ['p2', 'p3', 'p4', 'p5', 'p6'] |
|
IOU_LABELS: [0, -1, 1] |
|
IOU_THRESHOLDS: [0.3, 0.7] |
|
LOSS_WEIGHT: 1.0 |
|
NMS_THRESH: 0.7 |
|
POSITIVE_FRACTION: 0.5 |
|
POST_NMS_TOPK_TEST: 1000 |
|
POST_NMS_TOPK_TRAIN: 1000 |
|
PRE_NMS_TOPK_TEST: 1000 |
|
PRE_NMS_TOPK_TRAIN: 2000 |
|
SMOOTH_L1_BETA: 0.0 |
|
SEM_SEG_HEAD: |
|
COMMON_STRIDE: 4 |
|
CONVS_DIM: 128 |
|
IGNORE_VALUE: 255 |
|
IN_FEATURES: ['p2', 'p3', 'p4', 'p5'] |
|
LOSS_WEIGHT: 1.0 |
|
NAME: SemSegFPNHead |
|
NORM: GN |
|
NUM_CLASSES: 54 |
|
WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/model_final.pth |
|
OUTPUT_DIR: /content/drive/MyDrive/layoutparser/modele |
|
SEED: -1 |
|
SOLVER: |
|
AMP: |
|
ENABLED: False |
|
BASE_LR: 0.00025 |
|
BIAS_LR_FACTOR: 1.0 |
|
CHECKPOINT_PERIOD: 50 |
|
CLIP_GRADIENTS: |
|
CLIP_TYPE: value |
|
CLIP_VALUE: 1.0 |
|
ENABLED: False |
|
NORM_TYPE: 2.0 |
|
GAMMA: 0.1 |
|
IMS_PER_BATCH: 2 |
|
LR_SCHEDULER_NAME: WarmupMultiStepLR |
|
MAX_ITER: 300 |
|
MOMENTUM: 0.9 |
|
NESTEROV: False |
|
REFERENCE_WORLD_SIZE: 0 |
|
STEPS: (210000, 250000) |
|
WARMUP_FACTOR: 0.001 |
|
WARMUP_ITERS: 1000 |
|
WARMUP_METHOD: linear |
|
WEIGHT_DECAY: 0.0001 |
|
WEIGHT_DECAY_BIAS: 0.0001 |
|
WEIGHT_DECAY_NORM: 0.0 |
|
TEST: |
|
AUG: |
|
ENABLED: False |
|
FLIP: True |
|
MAX_SIZE: 4000 |
|
MIN_SIZES: (400, 500, 600, 700, 800, 900, 1000, 1100, 1200) |
|
DETECTIONS_PER_IMAGE: 100 |
|
EVAL_PERIOD: 0 |
|
EXPECTED_RESULTS: [] |
|
KEYPOINT_OKS_SIGMAS: [] |
|
PRECISE_BN: |
|
ENABLED: False |
|
NUM_ITER: 200 |
|
VERSION: 2 |
|
VIS_PERIOD: 0 |
|
[04/19 13:21:20] detectron2 INFO: Full config saved to /content/drive/MyDrive/layoutparser/modele/config.yaml |
|
[04/19 13:21:20] d2.utils.env INFO: Using a generated random seed 20391353 |
|
[04/19 13:21:23] d2.engine.defaults INFO: Model: |
|
GeneralizedRCNN( |
|
(backbone): FPN( |
|
(fpn_lateral2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1)) |
|
(fpn_output2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) |
|
(fpn_lateral3): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1)) |
|
(fpn_output3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) |
|
(fpn_lateral4): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1)) |
|
(fpn_output4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) |
|
(fpn_lateral5): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1)) |
|
(fpn_output5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) |
|
(top_block): LastLevelMaxPool() |
|
(bottom_up): ResNet( |
|
(stem): BasicStem( |
|
(conv1): Conv2d( |
|
3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) |
|
) |
|
) |
|
(res2): Sequential( |
|
(0): BottleneckBlock( |
|
(shortcut): Conv2d( |
|
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv1): Conv2d( |
|
64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
) |
|
(1): BottleneckBlock( |
|
(conv1): Conv2d( |
|
256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
) |
|
(2): BottleneckBlock( |
|
(conv1): Conv2d( |
|
256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
) |
|
) |
|
(res3): Sequential( |
|
(0): BottleneckBlock( |
|
(shortcut): Conv2d( |
|
256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
(conv1): Conv2d( |
|
256, 128, kernel_size=(1, 1), stride=(2, 2), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
) |
|
(1): BottleneckBlock( |
|
(conv1): Conv2d( |
|
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
) |
|
(2): BottleneckBlock( |
|
(conv1): Conv2d( |
|
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
) |
|
(3): BottleneckBlock( |
|
(conv1): Conv2d( |
|
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
) |
|
) |
|
(res4): Sequential( |
|
(0): BottleneckBlock( |
|
(shortcut): Conv2d( |
|
512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) |
|
) |
|
(conv1): Conv2d( |
|
512, 256, kernel_size=(1, 1), stride=(2, 2), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) |
|
) |
|
) |
|
(1): BottleneckBlock( |
|
(conv1): Conv2d( |
|
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) |
|
) |
|
) |
|
(2): BottleneckBlock( |
|
(conv1): Conv2d( |
|
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) |
|
) |
|
) |
|
(3): BottleneckBlock( |
|
(conv1): Conv2d( |
|
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) |
|
) |
|
) |
|
(4): BottleneckBlock( |
|
(conv1): Conv2d( |
|
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) |
|
) |
|
) |
|
(5): BottleneckBlock( |
|
(conv1): Conv2d( |
|
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) |
|
) |
|
) |
|
) |
|
(res5): Sequential( |
|
(0): BottleneckBlock( |
|
(shortcut): Conv2d( |
|
1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05) |
|
) |
|
(conv1): Conv2d( |
|
1024, 512, kernel_size=(1, 1), stride=(2, 2), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05) |
|
) |
|
) |
|
(1): BottleneckBlock( |
|
(conv1): Conv2d( |
|
2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05) |
|
) |
|
) |
|
(2): BottleneckBlock( |
|
(conv1): Conv2d( |
|
2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
(conv2): Conv2d( |
|
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) |
|
) |
|
(conv3): Conv2d( |
|
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False |
|
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05) |
|
) |
|
) |
|
) |
|
) |
|
) |
|
(proposal_generator): RPN( |
|
(rpn_head): StandardRPNHead( |
|
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) |
|
(objectness_logits): Conv2d(256, 3, kernel_size=(1, 1), stride=(1, 1)) |
|
(anchor_deltas): Conv2d(256, 12, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
(anchor_generator): DefaultAnchorGenerator( |
|
(cell_anchors): BufferList() |
|
) |
|
) |
|
(roi_heads): StandardROIHeads( |
|
(box_pooler): ROIPooler( |
|
(level_poolers): ModuleList( |
|
(0): ROIAlign(output_size=(7, 7), spatial_scale=0.25, sampling_ratio=0, aligned=True) |
|
(1): ROIAlign(output_size=(7, 7), spatial_scale=0.125, sampling_ratio=0, aligned=True) |
|
(2): ROIAlign(output_size=(7, 7), spatial_scale=0.0625, sampling_ratio=0, aligned=True) |
|
(3): ROIAlign(output_size=(7, 7), spatial_scale=0.03125, sampling_ratio=0, aligned=True) |
|
) |
|
) |
|
(box_head): FastRCNNConvFCHead( |
|
(flatten): Flatten(start_dim=1, end_dim=-1) |
|
(fc1): Linear(in_features=12544, out_features=1024, bias=True) |
|
(fc_relu1): ReLU() |
|
(fc2): Linear(in_features=1024, out_features=1024, bias=True) |
|
(fc_relu2): ReLU() |
|
) |
|
(box_predictor): FastRCNNOutputLayers( |
|
(cls_score): Linear(in_features=1024, out_features=3, bias=True) |
|
(bbox_pred): Linear(in_features=1024, out_features=8, bias=True) |
|
) |
|
(mask_pooler): ROIPooler( |
|
(level_poolers): ModuleList( |
|
(0): ROIAlign(output_size=(14, 14), spatial_scale=0.25, sampling_ratio=0, aligned=True) |
|
(1): ROIAlign(output_size=(14, 14), spatial_scale=0.125, sampling_ratio=0, aligned=True) |
|
(2): ROIAlign(output_size=(14, 14), spatial_scale=0.0625, sampling_ratio=0, aligned=True) |
|
(3): ROIAlign(output_size=(14, 14), spatial_scale=0.03125, sampling_ratio=0, aligned=True) |
|
) |
|
) |
|
(mask_head): MaskRCNNConvUpsampleHead( |
|
(mask_fcn1): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1) |
|
(activation): ReLU() |
|
) |
|
(mask_fcn2): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1) |
|
(activation): ReLU() |
|
) |
|
(mask_fcn3): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1) |
|
(activation): ReLU() |
|
) |
|
(mask_fcn4): Conv2d( |
|
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1) |
|
(activation): ReLU() |
|
) |
|
(deconv): ConvTranspose2d(256, 256, kernel_size=(2, 2), stride=(2, 2)) |
|
(deconv_relu): ReLU() |
|
(predictor): Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1)) |
|
) |
|
) |
|
) |
|
[04/19 13:21:23] d2.data.dataset_mapper INFO: [DatasetMapper] Augmentations used in training: [ResizeShortestEdge(short_edge_length=(640, 672, 704, 736, 768, 800), max_size=1333, sample_style='choice'), RandomFlip(), RandomRotation(angle=[-90.0, 0.0])] |
|
[04/19 13:21:23] d2.data.datasets.coco INFO: Loaded 36 images in COCO format from /content/drive/MyDrive/layoutparser/dataset6/train/via_project_19Apr2023_15h0m_coco.json |
|
[04/19 13:21:23] d2.data.build INFO: Removed 6 images with no usable annotations. 30 images left. |
|
[04/19 13:21:23] d2.data.build INFO: Distribution of instances among all 2 categories: |
|
[36m| category | #instances | category | #instances | |
|
|:----------:|:-------------|:----------:|:-------------| |
|
| | 89 | | 0 | |
|
| | | | | |
|
| total | 89 | | |[0m |
|
[04/19 13:21:23] d2.data.build INFO: Using training sampler TrainingSampler |
|
[04/19 13:21:23] d2.data.common INFO: Serializing 30 elements to byte tensors and concatenating them all ... |
|
[04/19 13:21:23] d2.data.common INFO: Serialized dataset takes 0.01 MiB |
|
[04/19 13:21:23] d2.solver.build WARNING: SOLVER.STEPS contains values larger than SOLVER.MAX_ITER. These values will be ignored. |
|
[04/19 13:21:26] fvcore.common.checkpoint INFO: Loading checkpoint from /content/drive/MyDrive/layoutparser/modele/modele3_NP?/model_final.pth |
|
[04/19 13:21:31] d2.engine.train_loop INFO: Starting training from iteration 0 |
|
[04/19 13:21:59] d2.utils.events INFO: eta: 0:03:57 iter: 19 total_loss: 0.5817 loss_cls: 0.122 loss_box_reg: 0.1813 loss_mask: 0.2043 loss_rpn_cls: 0.01694 loss_rpn_loc: 0.02236 time: 0.8670 data_time: 0.0615 lr: 4.9953e-06 max_mem: 4741M |
|
[04/19 13:22:16] d2.utils.events INFO: eta: 0:03:36 iter: 39 total_loss: 0.5271 loss_cls: 0.108 loss_box_reg: 0.1928 loss_mask: 0.1966 loss_rpn_cls: 0.01371 loss_rpn_loc: 0.0178 time: 0.8510 data_time: 0.0094 lr: 9.9902e-06 max_mem: 4741M |
|
[04/19 13:22:25] fvcore.common.checkpoint INFO: Saving checkpoint to /content/drive/MyDrive/layoutparser/modele/model_0000049.pth |
|
[04/19 13:22:35] d2.utils.events INFO: eta: 0:03:22 iter: 59 total_loss: 0.5328 loss_cls: 0.09943 loss_box_reg: 0.1768 loss_mask: 0.1878 loss_rpn_cls: 0.01652 loss_rpn_loc: 0.02977 time: 0.8703 data_time: 0.0149 lr: 1.4985e-05 max_mem: 4742M |
|
[04/19 13:22:53] d2.utils.events INFO: eta: 0:03:09 iter: 79 total_loss: 0.5528 loss_cls: 0.1002 loss_box_reg: 0.1706 loss_mask: 0.2053 loss_rpn_cls: 0.01738 loss_rpn_loc: 0.02357 time: 0.8795 data_time: 0.0108 lr: 1.998e-05 max_mem: 4742M |
|
[04/19 13:23:11] fvcore.common.checkpoint INFO: Saving checkpoint to /content/drive/MyDrive/layoutparser/modele/model_0000099.pth |
|
[04/19 13:23:13] d2.utils.events INFO: eta: 0:02:53 iter: 99 total_loss: 0.5248 loss_cls: 0.08265 loss_box_reg: 0.1726 loss_mask: 0.1772 loss_rpn_cls: 0.01976 loss_rpn_loc: 0.02078 time: 0.8858 data_time: 0.0114 lr: 2.4975e-05 max_mem: 4742M |
|
[04/19 13:23:32] d2.utils.events INFO: eta: 0:02:38 iter: 119 total_loss: 0.5286 loss_cls: 0.09827 loss_box_reg: 0.1722 loss_mask: 0.1774 loss_rpn_cls: 0.01788 loss_rpn_loc: 0.0259 time: 0.8971 data_time: 0.0096 lr: 2.997e-05 max_mem: 4742M |
|
[04/19 13:23:50] d2.utils.events INFO: eta: 0:02:21 iter: 139 total_loss: 0.5629 loss_cls: 0.09456 loss_box_reg: 0.1846 loss_mask: 0.1865 loss_rpn_cls: 0.02039 loss_rpn_loc: 0.02839 time: 0.9012 data_time: 0.0110 lr: 3.4965e-05 max_mem: 4742M |
|
[04/19 13:23:59] fvcore.common.checkpoint INFO: Saving checkpoint to /content/drive/MyDrive/layoutparser/modele/model_0000149.pth |
|
[04/19 13:24:10] d2.utils.events INFO: eta: 0:02:04 iter: 159 total_loss: 0.491 loss_cls: 0.09832 loss_box_reg: 0.1694 loss_mask: 0.1691 loss_rpn_cls: 0.008938 loss_rpn_loc: 0.01734 time: 0.9020 data_time: 0.0080 lr: 3.996e-05 max_mem: 4742M |
|
[04/19 13:24:29] d2.utils.events INFO: eta: 0:01:47 iter: 179 total_loss: 0.4756 loss_cls: 0.08483 loss_box_reg: 0.162 loss_mask: 0.1571 loss_rpn_cls: 0.01482 loss_rpn_loc: 0.03214 time: 0.9094 data_time: 0.0101 lr: 4.4955e-05 max_mem: 4742M |
|
[04/19 13:24:49] fvcore.common.checkpoint INFO: Saving checkpoint to /content/drive/MyDrive/layoutparser/modele/model_0000199.pth |
|
[04/19 13:24:50] d2.utils.events INFO: eta: 0:01:30 iter: 199 total_loss: 0.4405 loss_cls: 0.08707 loss_box_reg: 0.1718 loss_mask: 0.1673 loss_rpn_cls: 0.008687 loss_rpn_loc: 0.02504 time: 0.9157 data_time: 0.0107 lr: 4.995e-05 max_mem: 4742M |
|
[04/19 13:25:09] d2.utils.events INFO: eta: 0:01:12 iter: 219 total_loss: 0.4541 loss_cls: 0.08539 loss_box_reg: 0.1581 loss_mask: 0.1605 loss_rpn_cls: 0.01627 loss_rpn_loc: 0.01755 time: 0.9168 data_time: 0.0112 lr: 5.4945e-05 max_mem: 4742M |
|
[04/19 13:25:28] d2.utils.events INFO: eta: 0:00:54 iter: 239 total_loss: 0.4896 loss_cls: 0.09352 loss_box_reg: 0.1829 loss_mask: 0.1675 loss_rpn_cls: 0.0139 loss_rpn_loc: 0.02522 time: 0.9196 data_time: 0.0080 lr: 5.994e-05 max_mem: 4742M |
|
[04/19 13:25:37] fvcore.common.checkpoint INFO: Saving checkpoint to /content/drive/MyDrive/layoutparser/modele/model_0000249.pth |
|
[04/19 13:25:48] d2.utils.events INFO: eta: 0:00:36 iter: 259 total_loss: 0.4373 loss_cls: 0.06817 loss_box_reg: 0.1526 loss_mask: 0.1634 loss_rpn_cls: 0.0137 loss_rpn_loc: 0.02394 time: 0.9241 data_time: 0.0098 lr: 6.4935e-05 max_mem: 4742M |
|
[04/19 13:26:08] d2.utils.events INFO: eta: 0:00:18 iter: 279 total_loss: 0.4922 loss_cls: 0.1011 loss_box_reg: 0.1941 loss_mask: 0.1613 loss_rpn_cls: 0.01023 loss_rpn_loc: 0.03586 time: 0.9272 data_time: 0.0080 lr: 6.993e-05 max_mem: 4742M |
|
[04/19 13:26:28] fvcore.common.checkpoint INFO: Saving checkpoint to /content/drive/MyDrive/layoutparser/modele/model_0000299.pth |
|
[04/19 13:26:29] fvcore.common.checkpoint INFO: Saving checkpoint to /content/drive/MyDrive/layoutparser/modele/model_final.pth |
|
[04/19 13:26:31] d2.utils.events INFO: eta: 0:00:00 iter: 299 total_loss: 0.4673 loss_cls: 0.08663 loss_box_reg: 0.178 loss_mask: 0.1653 loss_rpn_cls: 0.006576 loss_rpn_loc: 0.02131 time: 0.9322 data_time: 0.0116 lr: 7.4925e-05 max_mem: 4742M |
|
[04/19 13:26:31] d2.engine.hooks INFO: Overall training speed: 298 iterations in 0:04:37 (0.9322 s / it) |
|
[04/19 13:26:31] d2.engine.hooks INFO: Total training time: 0:04:47 (0:00:09 on hooks) |
|
|