Upload 9 files
Browse files- config.json +325 -0
- config.yaml +325 -0
- events.out.tfevents.1681910385.906c2a3c48ac.2206.0 +3 -0
- events.out.tfevents.1681910424.906c2a3c48ac.2416.0 +3 -0
- events.out.tfevents.1681910486.906c2a3c48ac.2698.0 +3 -0
- last_checkpoint +1 -0
- log.txt +2758 -0
- metrics.json +15 -0
- model_final.pth +3 -0
config.json
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CUDNN_BENCHMARK: false
|
2 |
+
DATALOADER:
|
3 |
+
ASPECT_RATIO_GROUPING: true
|
4 |
+
FILTER_EMPTY_ANNOTATIONS: true
|
5 |
+
NUM_WORKERS: 4
|
6 |
+
REPEAT_THRESHOLD: 0.0
|
7 |
+
SAMPLER_TRAIN: TrainingSampler
|
8 |
+
DATASETS:
|
9 |
+
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
|
10 |
+
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
|
11 |
+
PROPOSAL_FILES_TEST: []
|
12 |
+
PROPOSAL_FILES_TRAIN: []
|
13 |
+
TEST:
|
14 |
+
- modele-val
|
15 |
+
TRAIN:
|
16 |
+
- modele-train
|
17 |
+
GLOBAL:
|
18 |
+
HACK: 1.0
|
19 |
+
INPUT:
|
20 |
+
CROP:
|
21 |
+
ENABLED: false
|
22 |
+
SIZE:
|
23 |
+
- 0.9
|
24 |
+
- 0.9
|
25 |
+
TYPE: relative_range
|
26 |
+
FORMAT: BGR
|
27 |
+
MASK_FORMAT: polygon
|
28 |
+
MAX_SIZE_TEST: 1333
|
29 |
+
MAX_SIZE_TRAIN: 1333
|
30 |
+
MIN_SIZE_TEST: 800
|
31 |
+
MIN_SIZE_TRAIN:
|
32 |
+
- 640
|
33 |
+
- 672
|
34 |
+
- 704
|
35 |
+
- 736
|
36 |
+
- 768
|
37 |
+
- 800
|
38 |
+
MIN_SIZE_TRAIN_SAMPLING: choice
|
39 |
+
RANDOM_FLIP: horizontal
|
40 |
+
MODEL:
|
41 |
+
ANCHOR_GENERATOR:
|
42 |
+
ANGLES:
|
43 |
+
- - -90
|
44 |
+
- 0
|
45 |
+
- 90
|
46 |
+
ASPECT_RATIOS:
|
47 |
+
- - 0.5
|
48 |
+
- 1.0
|
49 |
+
- 2.0
|
50 |
+
NAME: DefaultAnchorGenerator
|
51 |
+
OFFSET: 0.0
|
52 |
+
SIZES:
|
53 |
+
- - 32
|
54 |
+
- - 64
|
55 |
+
- - 128
|
56 |
+
- - 256
|
57 |
+
- - 512
|
58 |
+
BACKBONE:
|
59 |
+
FREEZE_AT: 2
|
60 |
+
NAME: build_resnet_fpn_backbone
|
61 |
+
DEVICE: cuda
|
62 |
+
FPN:
|
63 |
+
FUSE_TYPE: sum
|
64 |
+
IN_FEATURES:
|
65 |
+
- res2
|
66 |
+
- res3
|
67 |
+
- res4
|
68 |
+
- res5
|
69 |
+
NORM: ''
|
70 |
+
OUT_CHANNELS: 256
|
71 |
+
KEYPOINT_ON: false
|
72 |
+
LOAD_PROPOSALS: false
|
73 |
+
MASK_ON: true
|
74 |
+
META_ARCHITECTURE: GeneralizedRCNN
|
75 |
+
PANOPTIC_FPN:
|
76 |
+
COMBINE:
|
77 |
+
ENABLED: true
|
78 |
+
INSTANCES_CONFIDENCE_THRESH: 0.5
|
79 |
+
OVERLAP_THRESH: 0.5
|
80 |
+
STUFF_AREA_LIMIT: 4096
|
81 |
+
INSTANCE_LOSS_WEIGHT: 1.0
|
82 |
+
PIXEL_MEAN:
|
83 |
+
- 103.53
|
84 |
+
- 116.28
|
85 |
+
- 123.675
|
86 |
+
PIXEL_STD:
|
87 |
+
- 1.0
|
88 |
+
- 1.0
|
89 |
+
- 1.0
|
90 |
+
PROPOSAL_GENERATOR:
|
91 |
+
MIN_SIZE: 0
|
92 |
+
NAME: RPN
|
93 |
+
RESNETS:
|
94 |
+
DEFORM_MODULATED: false
|
95 |
+
DEFORM_NUM_GROUPS: 1
|
96 |
+
DEFORM_ON_PER_STAGE:
|
97 |
+
- false
|
98 |
+
- false
|
99 |
+
- false
|
100 |
+
- false
|
101 |
+
DEPTH: 50
|
102 |
+
NORM: FrozenBN
|
103 |
+
NUM_GROUPS: 1
|
104 |
+
OUT_FEATURES:
|
105 |
+
- res2
|
106 |
+
- res3
|
107 |
+
- res4
|
108 |
+
- res5
|
109 |
+
RES2_OUT_CHANNELS: 256
|
110 |
+
RES5_DILATION: 1
|
111 |
+
STEM_OUT_CHANNELS: 64
|
112 |
+
STRIDE_IN_1X1: true
|
113 |
+
WIDTH_PER_GROUP: 64
|
114 |
+
RETINANET:
|
115 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
116 |
+
BBOX_REG_WEIGHTS:
|
117 |
+
- 1.0
|
118 |
+
- 1.0
|
119 |
+
- 1.0
|
120 |
+
- 1.0
|
121 |
+
FOCAL_LOSS_ALPHA: 0.25
|
122 |
+
FOCAL_LOSS_GAMMA: 2.0
|
123 |
+
IN_FEATURES:
|
124 |
+
- p3
|
125 |
+
- p4
|
126 |
+
- p5
|
127 |
+
- p6
|
128 |
+
- p7
|
129 |
+
IOU_LABELS:
|
130 |
+
- 0
|
131 |
+
- -1
|
132 |
+
- 1
|
133 |
+
IOU_THRESHOLDS:
|
134 |
+
- 0.4
|
135 |
+
- 0.5
|
136 |
+
NMS_THRESH_TEST: 0.5
|
137 |
+
NORM: ''
|
138 |
+
NUM_CLASSES: 80
|
139 |
+
NUM_CONVS: 4
|
140 |
+
PRIOR_PROB: 0.01
|
141 |
+
SCORE_THRESH_TEST: 0.05
|
142 |
+
SMOOTH_L1_LOSS_BETA: 0.1
|
143 |
+
TOPK_CANDIDATES_TEST: 1000
|
144 |
+
ROI_BOX_CASCADE_HEAD:
|
145 |
+
BBOX_REG_WEIGHTS:
|
146 |
+
- - 10.0
|
147 |
+
- 10.0
|
148 |
+
- 5.0
|
149 |
+
- 5.0
|
150 |
+
- - 20.0
|
151 |
+
- 20.0
|
152 |
+
- 10.0
|
153 |
+
- 10.0
|
154 |
+
- - 30.0
|
155 |
+
- 30.0
|
156 |
+
- 15.0
|
157 |
+
- 15.0
|
158 |
+
IOUS:
|
159 |
+
- 0.5
|
160 |
+
- 0.6
|
161 |
+
- 0.7
|
162 |
+
ROI_BOX_HEAD:
|
163 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
164 |
+
BBOX_REG_LOSS_WEIGHT: 1.0
|
165 |
+
BBOX_REG_WEIGHTS:
|
166 |
+
- 10.0
|
167 |
+
- 10.0
|
168 |
+
- 5.0
|
169 |
+
- 5.0
|
170 |
+
CLS_AGNOSTIC_BBOX_REG: false
|
171 |
+
CONV_DIM: 256
|
172 |
+
FC_DIM: 1024
|
173 |
+
NAME: FastRCNNConvFCHead
|
174 |
+
NORM: ''
|
175 |
+
NUM_CONV: 0
|
176 |
+
NUM_FC: 2
|
177 |
+
POOLER_RESOLUTION: 7
|
178 |
+
POOLER_SAMPLING_RATIO: 0
|
179 |
+
POOLER_TYPE: ROIAlignV2
|
180 |
+
SMOOTH_L1_BETA: 0.0
|
181 |
+
TRAIN_ON_PRED_BOXES: false
|
182 |
+
ROI_HEADS:
|
183 |
+
BATCH_SIZE_PER_IMAGE: 512
|
184 |
+
IN_FEATURES:
|
185 |
+
- p2
|
186 |
+
- p3
|
187 |
+
- p4
|
188 |
+
- p5
|
189 |
+
IOU_LABELS:
|
190 |
+
- 0
|
191 |
+
- 1
|
192 |
+
IOU_THRESHOLDS:
|
193 |
+
- 0.5
|
194 |
+
NAME: StandardROIHeads
|
195 |
+
NMS_THRESH_TEST: 0.5
|
196 |
+
NUM_CLASSES: 2
|
197 |
+
POSITIVE_FRACTION: 0.25
|
198 |
+
PROPOSAL_APPEND_GT: true
|
199 |
+
SCORE_THRESH_TEST: 0.05
|
200 |
+
ROI_KEYPOINT_HEAD:
|
201 |
+
CONV_DIMS:
|
202 |
+
- 512
|
203 |
+
- 512
|
204 |
+
- 512
|
205 |
+
- 512
|
206 |
+
- 512
|
207 |
+
- 512
|
208 |
+
- 512
|
209 |
+
- 512
|
210 |
+
LOSS_WEIGHT: 1.0
|
211 |
+
MIN_KEYPOINTS_PER_IMAGE: 1
|
212 |
+
NAME: KRCNNConvDeconvUpsampleHead
|
213 |
+
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true
|
214 |
+
NUM_KEYPOINTS: 17
|
215 |
+
POOLER_RESOLUTION: 14
|
216 |
+
POOLER_SAMPLING_RATIO: 0
|
217 |
+
POOLER_TYPE: ROIAlignV2
|
218 |
+
ROI_MASK_HEAD:
|
219 |
+
CLS_AGNOSTIC_MASK: false
|
220 |
+
CONV_DIM: 256
|
221 |
+
NAME: MaskRCNNConvUpsampleHead
|
222 |
+
NORM: ''
|
223 |
+
NUM_CONV: 4
|
224 |
+
POOLER_RESOLUTION: 14
|
225 |
+
POOLER_SAMPLING_RATIO: 0
|
226 |
+
POOLER_TYPE: ROIAlignV2
|
227 |
+
RPN:
|
228 |
+
BATCH_SIZE_PER_IMAGE: 256
|
229 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
230 |
+
BBOX_REG_LOSS_WEIGHT: 1.0
|
231 |
+
BBOX_REG_WEIGHTS:
|
232 |
+
- 1.0
|
233 |
+
- 1.0
|
234 |
+
- 1.0
|
235 |
+
- 1.0
|
236 |
+
BOUNDARY_THRESH: -1
|
237 |
+
HEAD_NAME: StandardRPNHead
|
238 |
+
IN_FEATURES:
|
239 |
+
- p2
|
240 |
+
- p3
|
241 |
+
- p4
|
242 |
+
- p5
|
243 |
+
- p6
|
244 |
+
IOU_LABELS:
|
245 |
+
- 0
|
246 |
+
- -1
|
247 |
+
- 1
|
248 |
+
IOU_THRESHOLDS:
|
249 |
+
- 0.3
|
250 |
+
- 0.7
|
251 |
+
LOSS_WEIGHT: 1.0
|
252 |
+
NMS_THRESH: 0.7
|
253 |
+
POSITIVE_FRACTION: 0.5
|
254 |
+
POST_NMS_TOPK_TEST: 1000
|
255 |
+
POST_NMS_TOPK_TRAIN: 1000
|
256 |
+
PRE_NMS_TOPK_TEST: 1000
|
257 |
+
PRE_NMS_TOPK_TRAIN: 2000
|
258 |
+
SMOOTH_L1_BETA: 0.0
|
259 |
+
SEM_SEG_HEAD:
|
260 |
+
COMMON_STRIDE: 4
|
261 |
+
CONVS_DIM: 128
|
262 |
+
IGNORE_VALUE: 255
|
263 |
+
IN_FEATURES:
|
264 |
+
- p2
|
265 |
+
- p3
|
266 |
+
- p4
|
267 |
+
- p5
|
268 |
+
LOSS_WEIGHT: 1.0
|
269 |
+
NAME: SemSegFPNHead
|
270 |
+
NORM: GN
|
271 |
+
NUM_CLASSES: 54
|
272 |
+
WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/model_final.pth
|
273 |
+
OUTPUT_DIR: /content/drive/MyDrive/layoutparser/modele
|
274 |
+
SEED: -1
|
275 |
+
SOLVER:
|
276 |
+
AMP:
|
277 |
+
ENABLED: false
|
278 |
+
BASE_LR: 0.00025
|
279 |
+
BIAS_LR_FACTOR: 1.0
|
280 |
+
CHECKPOINT_PERIOD: 50
|
281 |
+
CLIP_GRADIENTS:
|
282 |
+
CLIP_TYPE: value
|
283 |
+
CLIP_VALUE: 1.0
|
284 |
+
ENABLED: false
|
285 |
+
NORM_TYPE: 2.0
|
286 |
+
GAMMA: 0.1
|
287 |
+
IMS_PER_BATCH: 2
|
288 |
+
LR_SCHEDULER_NAME: WarmupMultiStepLR
|
289 |
+
MAX_ITER: 300
|
290 |
+
MOMENTUM: 0.9
|
291 |
+
NESTEROV: false
|
292 |
+
REFERENCE_WORLD_SIZE: 0
|
293 |
+
STEPS:
|
294 |
+
- 210000
|
295 |
+
- 250000
|
296 |
+
WARMUP_FACTOR: 0.001
|
297 |
+
WARMUP_ITERS: 1000
|
298 |
+
WARMUP_METHOD: linear
|
299 |
+
WEIGHT_DECAY: 0.0001
|
300 |
+
WEIGHT_DECAY_BIAS: 0.0001
|
301 |
+
WEIGHT_DECAY_NORM: 0.0
|
302 |
+
TEST:
|
303 |
+
AUG:
|
304 |
+
ENABLED: false
|
305 |
+
FLIP: true
|
306 |
+
MAX_SIZE: 4000
|
307 |
+
MIN_SIZES:
|
308 |
+
- 400
|
309 |
+
- 500
|
310 |
+
- 600
|
311 |
+
- 700
|
312 |
+
- 800
|
313 |
+
- 900
|
314 |
+
- 1000
|
315 |
+
- 1100
|
316 |
+
- 1200
|
317 |
+
DETECTIONS_PER_IMAGE: 100
|
318 |
+
EVAL_PERIOD: 0
|
319 |
+
EXPECTED_RESULTS: []
|
320 |
+
KEYPOINT_OKS_SIGMAS: []
|
321 |
+
PRECISE_BN:
|
322 |
+
ENABLED: false
|
323 |
+
NUM_ITER: 200
|
324 |
+
VERSION: 2
|
325 |
+
VIS_PERIOD: 0
|
config.yaml
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CUDNN_BENCHMARK: false
|
2 |
+
DATALOADER:
|
3 |
+
ASPECT_RATIO_GROUPING: true
|
4 |
+
FILTER_EMPTY_ANNOTATIONS: true
|
5 |
+
NUM_WORKERS: 4
|
6 |
+
REPEAT_THRESHOLD: 0.0
|
7 |
+
SAMPLER_TRAIN: TrainingSampler
|
8 |
+
DATASETS:
|
9 |
+
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
|
10 |
+
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
|
11 |
+
PROPOSAL_FILES_TEST: []
|
12 |
+
PROPOSAL_FILES_TRAIN: []
|
13 |
+
TEST:
|
14 |
+
- modele-val
|
15 |
+
TRAIN:
|
16 |
+
- modele-train
|
17 |
+
GLOBAL:
|
18 |
+
HACK: 1.0
|
19 |
+
INPUT:
|
20 |
+
CROP:
|
21 |
+
ENABLED: false
|
22 |
+
SIZE:
|
23 |
+
- 0.9
|
24 |
+
- 0.9
|
25 |
+
TYPE: relative_range
|
26 |
+
FORMAT: BGR
|
27 |
+
MASK_FORMAT: polygon
|
28 |
+
MAX_SIZE_TEST: 1333
|
29 |
+
MAX_SIZE_TRAIN: 1333
|
30 |
+
MIN_SIZE_TEST: 800
|
31 |
+
MIN_SIZE_TRAIN:
|
32 |
+
- 640
|
33 |
+
- 672
|
34 |
+
- 704
|
35 |
+
- 736
|
36 |
+
- 768
|
37 |
+
- 800
|
38 |
+
MIN_SIZE_TRAIN_SAMPLING: choice
|
39 |
+
RANDOM_FLIP: horizontal
|
40 |
+
MODEL:
|
41 |
+
ANCHOR_GENERATOR:
|
42 |
+
ANGLES:
|
43 |
+
- - -90
|
44 |
+
- 0
|
45 |
+
- 90
|
46 |
+
ASPECT_RATIOS:
|
47 |
+
- - 0.5
|
48 |
+
- 1.0
|
49 |
+
- 2.0
|
50 |
+
NAME: DefaultAnchorGenerator
|
51 |
+
OFFSET: 0.0
|
52 |
+
SIZES:
|
53 |
+
- - 32
|
54 |
+
- - 64
|
55 |
+
- - 128
|
56 |
+
- - 256
|
57 |
+
- - 512
|
58 |
+
BACKBONE:
|
59 |
+
FREEZE_AT: 2
|
60 |
+
NAME: build_resnet_fpn_backbone
|
61 |
+
DEVICE: cuda
|
62 |
+
FPN:
|
63 |
+
FUSE_TYPE: sum
|
64 |
+
IN_FEATURES:
|
65 |
+
- res2
|
66 |
+
- res3
|
67 |
+
- res4
|
68 |
+
- res5
|
69 |
+
NORM: ''
|
70 |
+
OUT_CHANNELS: 256
|
71 |
+
KEYPOINT_ON: false
|
72 |
+
LOAD_PROPOSALS: false
|
73 |
+
MASK_ON: true
|
74 |
+
META_ARCHITECTURE: GeneralizedRCNN
|
75 |
+
PANOPTIC_FPN:
|
76 |
+
COMBINE:
|
77 |
+
ENABLED: true
|
78 |
+
INSTANCES_CONFIDENCE_THRESH: 0.5
|
79 |
+
OVERLAP_THRESH: 0.5
|
80 |
+
STUFF_AREA_LIMIT: 4096
|
81 |
+
INSTANCE_LOSS_WEIGHT: 1.0
|
82 |
+
PIXEL_MEAN:
|
83 |
+
- 103.53
|
84 |
+
- 116.28
|
85 |
+
- 123.675
|
86 |
+
PIXEL_STD:
|
87 |
+
- 1.0
|
88 |
+
- 1.0
|
89 |
+
- 1.0
|
90 |
+
PROPOSAL_GENERATOR:
|
91 |
+
MIN_SIZE: 0
|
92 |
+
NAME: RPN
|
93 |
+
RESNETS:
|
94 |
+
DEFORM_MODULATED: false
|
95 |
+
DEFORM_NUM_GROUPS: 1
|
96 |
+
DEFORM_ON_PER_STAGE:
|
97 |
+
- false
|
98 |
+
- false
|
99 |
+
- false
|
100 |
+
- false
|
101 |
+
DEPTH: 50
|
102 |
+
NORM: FrozenBN
|
103 |
+
NUM_GROUPS: 1
|
104 |
+
OUT_FEATURES:
|
105 |
+
- res2
|
106 |
+
- res3
|
107 |
+
- res4
|
108 |
+
- res5
|
109 |
+
RES2_OUT_CHANNELS: 256
|
110 |
+
RES5_DILATION: 1
|
111 |
+
STEM_OUT_CHANNELS: 64
|
112 |
+
STRIDE_IN_1X1: true
|
113 |
+
WIDTH_PER_GROUP: 64
|
114 |
+
RETINANET:
|
115 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
116 |
+
BBOX_REG_WEIGHTS:
|
117 |
+
- 1.0
|
118 |
+
- 1.0
|
119 |
+
- 1.0
|
120 |
+
- 1.0
|
121 |
+
FOCAL_LOSS_ALPHA: 0.25
|
122 |
+
FOCAL_LOSS_GAMMA: 2.0
|
123 |
+
IN_FEATURES:
|
124 |
+
- p3
|
125 |
+
- p4
|
126 |
+
- p5
|
127 |
+
- p6
|
128 |
+
- p7
|
129 |
+
IOU_LABELS:
|
130 |
+
- 0
|
131 |
+
- -1
|
132 |
+
- 1
|
133 |
+
IOU_THRESHOLDS:
|
134 |
+
- 0.4
|
135 |
+
- 0.5
|
136 |
+
NMS_THRESH_TEST: 0.5
|
137 |
+
NORM: ''
|
138 |
+
NUM_CLASSES: 80
|
139 |
+
NUM_CONVS: 4
|
140 |
+
PRIOR_PROB: 0.01
|
141 |
+
SCORE_THRESH_TEST: 0.05
|
142 |
+
SMOOTH_L1_LOSS_BETA: 0.1
|
143 |
+
TOPK_CANDIDATES_TEST: 1000
|
144 |
+
ROI_BOX_CASCADE_HEAD:
|
145 |
+
BBOX_REG_WEIGHTS:
|
146 |
+
- - 10.0
|
147 |
+
- 10.0
|
148 |
+
- 5.0
|
149 |
+
- 5.0
|
150 |
+
- - 20.0
|
151 |
+
- 20.0
|
152 |
+
- 10.0
|
153 |
+
- 10.0
|
154 |
+
- - 30.0
|
155 |
+
- 30.0
|
156 |
+
- 15.0
|
157 |
+
- 15.0
|
158 |
+
IOUS:
|
159 |
+
- 0.5
|
160 |
+
- 0.6
|
161 |
+
- 0.7
|
162 |
+
ROI_BOX_HEAD:
|
163 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
164 |
+
BBOX_REG_LOSS_WEIGHT: 1.0
|
165 |
+
BBOX_REG_WEIGHTS:
|
166 |
+
- 10.0
|
167 |
+
- 10.0
|
168 |
+
- 5.0
|
169 |
+
- 5.0
|
170 |
+
CLS_AGNOSTIC_BBOX_REG: false
|
171 |
+
CONV_DIM: 256
|
172 |
+
FC_DIM: 1024
|
173 |
+
NAME: FastRCNNConvFCHead
|
174 |
+
NORM: ''
|
175 |
+
NUM_CONV: 0
|
176 |
+
NUM_FC: 2
|
177 |
+
POOLER_RESOLUTION: 7
|
178 |
+
POOLER_SAMPLING_RATIO: 0
|
179 |
+
POOLER_TYPE: ROIAlignV2
|
180 |
+
SMOOTH_L1_BETA: 0.0
|
181 |
+
TRAIN_ON_PRED_BOXES: false
|
182 |
+
ROI_HEADS:
|
183 |
+
BATCH_SIZE_PER_IMAGE: 512
|
184 |
+
IN_FEATURES:
|
185 |
+
- p2
|
186 |
+
- p3
|
187 |
+
- p4
|
188 |
+
- p5
|
189 |
+
IOU_LABELS:
|
190 |
+
- 0
|
191 |
+
- 1
|
192 |
+
IOU_THRESHOLDS:
|
193 |
+
- 0.5
|
194 |
+
NAME: StandardROIHeads
|
195 |
+
NMS_THRESH_TEST: 0.5
|
196 |
+
NUM_CLASSES: 2
|
197 |
+
POSITIVE_FRACTION: 0.25
|
198 |
+
PROPOSAL_APPEND_GT: true
|
199 |
+
SCORE_THRESH_TEST: 0.05
|
200 |
+
ROI_KEYPOINT_HEAD:
|
201 |
+
CONV_DIMS:
|
202 |
+
- 512
|
203 |
+
- 512
|
204 |
+
- 512
|
205 |
+
- 512
|
206 |
+
- 512
|
207 |
+
- 512
|
208 |
+
- 512
|
209 |
+
- 512
|
210 |
+
LOSS_WEIGHT: 1.0
|
211 |
+
MIN_KEYPOINTS_PER_IMAGE: 1
|
212 |
+
NAME: KRCNNConvDeconvUpsampleHead
|
213 |
+
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true
|
214 |
+
NUM_KEYPOINTS: 17
|
215 |
+
POOLER_RESOLUTION: 14
|
216 |
+
POOLER_SAMPLING_RATIO: 0
|
217 |
+
POOLER_TYPE: ROIAlignV2
|
218 |
+
ROI_MASK_HEAD:
|
219 |
+
CLS_AGNOSTIC_MASK: false
|
220 |
+
CONV_DIM: 256
|
221 |
+
NAME: MaskRCNNConvUpsampleHead
|
222 |
+
NORM: ''
|
223 |
+
NUM_CONV: 4
|
224 |
+
POOLER_RESOLUTION: 14
|
225 |
+
POOLER_SAMPLING_RATIO: 0
|
226 |
+
POOLER_TYPE: ROIAlignV2
|
227 |
+
RPN:
|
228 |
+
BATCH_SIZE_PER_IMAGE: 256
|
229 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
230 |
+
BBOX_REG_LOSS_WEIGHT: 1.0
|
231 |
+
BBOX_REG_WEIGHTS:
|
232 |
+
- 1.0
|
233 |
+
- 1.0
|
234 |
+
- 1.0
|
235 |
+
- 1.0
|
236 |
+
BOUNDARY_THRESH: -1
|
237 |
+
HEAD_NAME: StandardRPNHead
|
238 |
+
IN_FEATURES:
|
239 |
+
- p2
|
240 |
+
- p3
|
241 |
+
- p4
|
242 |
+
- p5
|
243 |
+
- p6
|
244 |
+
IOU_LABELS:
|
245 |
+
- 0
|
246 |
+
- -1
|
247 |
+
- 1
|
248 |
+
IOU_THRESHOLDS:
|
249 |
+
- 0.3
|
250 |
+
- 0.7
|
251 |
+
LOSS_WEIGHT: 1.0
|
252 |
+
NMS_THRESH: 0.7
|
253 |
+
POSITIVE_FRACTION: 0.5
|
254 |
+
POST_NMS_TOPK_TEST: 1000
|
255 |
+
POST_NMS_TOPK_TRAIN: 1000
|
256 |
+
PRE_NMS_TOPK_TEST: 1000
|
257 |
+
PRE_NMS_TOPK_TRAIN: 2000
|
258 |
+
SMOOTH_L1_BETA: 0.0
|
259 |
+
SEM_SEG_HEAD:
|
260 |
+
COMMON_STRIDE: 4
|
261 |
+
CONVS_DIM: 128
|
262 |
+
IGNORE_VALUE: 255
|
263 |
+
IN_FEATURES:
|
264 |
+
- p2
|
265 |
+
- p3
|
266 |
+
- p4
|
267 |
+
- p5
|
268 |
+
LOSS_WEIGHT: 1.0
|
269 |
+
NAME: SemSegFPNHead
|
270 |
+
NORM: GN
|
271 |
+
NUM_CLASSES: 54
|
272 |
+
WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/model_final.pth
|
273 |
+
OUTPUT_DIR: /content/drive/MyDrive/layoutparser/modele
|
274 |
+
SEED: -1
|
275 |
+
SOLVER:
|
276 |
+
AMP:
|
277 |
+
ENABLED: false
|
278 |
+
BASE_LR: 0.00025
|
279 |
+
BIAS_LR_FACTOR: 1.0
|
280 |
+
CHECKPOINT_PERIOD: 50
|
281 |
+
CLIP_GRADIENTS:
|
282 |
+
CLIP_TYPE: value
|
283 |
+
CLIP_VALUE: 1.0
|
284 |
+
ENABLED: false
|
285 |
+
NORM_TYPE: 2.0
|
286 |
+
GAMMA: 0.1
|
287 |
+
IMS_PER_BATCH: 2
|
288 |
+
LR_SCHEDULER_NAME: WarmupMultiStepLR
|
289 |
+
MAX_ITER: 300
|
290 |
+
MOMENTUM: 0.9
|
291 |
+
NESTEROV: false
|
292 |
+
REFERENCE_WORLD_SIZE: 0
|
293 |
+
STEPS:
|
294 |
+
- 210000
|
295 |
+
- 250000
|
296 |
+
WARMUP_FACTOR: 0.001
|
297 |
+
WARMUP_ITERS: 1000
|
298 |
+
WARMUP_METHOD: linear
|
299 |
+
WEIGHT_DECAY: 0.0001
|
300 |
+
WEIGHT_DECAY_BIAS: 0.0001
|
301 |
+
WEIGHT_DECAY_NORM: 0.0
|
302 |
+
TEST:
|
303 |
+
AUG:
|
304 |
+
ENABLED: false
|
305 |
+
FLIP: true
|
306 |
+
MAX_SIZE: 4000
|
307 |
+
MIN_SIZES:
|
308 |
+
- 400
|
309 |
+
- 500
|
310 |
+
- 600
|
311 |
+
- 700
|
312 |
+
- 800
|
313 |
+
- 900
|
314 |
+
- 1000
|
315 |
+
- 1100
|
316 |
+
- 1200
|
317 |
+
DETECTIONS_PER_IMAGE: 100
|
318 |
+
EVAL_PERIOD: 0
|
319 |
+
EXPECTED_RESULTS: []
|
320 |
+
KEYPOINT_OKS_SIGMAS: []
|
321 |
+
PRECISE_BN:
|
322 |
+
ENABLED: false
|
323 |
+
NUM_ITER: 200
|
324 |
+
VERSION: 2
|
325 |
+
VIS_PERIOD: 0
|
events.out.tfevents.1681910385.906c2a3c48ac.2206.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aad8ab0e1340cacf4edf029d2e904bb03844ee8ed9408a6e7e1c85ba8f7695a9
|
3 |
+
size 88
|
events.out.tfevents.1681910424.906c2a3c48ac.2416.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:622f1f3a134b80b2168c0d4fcb263babc44e4e1b240f593fbca1185a07cb1e95
|
3 |
+
size 88
|
events.out.tfevents.1681910486.906c2a3c48ac.2698.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c7c58b7aad0abc3cc2aa8b7b92fbc2f2bc2af1c8b8a29c4a06378c3585025dc
|
3 |
+
size 16318
|
last_checkpoint
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
model_final.pth
|
log.txt
ADDED
@@ -0,0 +1,2758 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[04/19 13:19:35] detectron2 INFO: Rank of current process: 0. World size: 1
|
2 |
+
[04/19 13:19:36] detectron2 INFO: Environment info:
|
3 |
+
---------------------- ----------------------------------------------------------------
|
4 |
+
sys.platform linux
|
5 |
+
Python 3.9.16 (main, Dec 7 2022, 01:11:51) [GCC 9.4.0]
|
6 |
+
numpy 1.22.4
|
7 |
+
detectron2 0.4 @/usr/local/lib/python3.9/dist-packages/detectron2
|
8 |
+
Compiler GCC 9.4
|
9 |
+
CUDA compiler CUDA 11.8
|
10 |
+
detectron2 arch flags 7.5
|
11 |
+
DETECTRON2_ENV_MODULE <not set>
|
12 |
+
PyTorch 2.0.0+cu118 @/usr/local/lib/python3.9/dist-packages/torch
|
13 |
+
PyTorch debug build False
|
14 |
+
GPU available True
|
15 |
+
GPU 0 Tesla T4 (arch=7.5)
|
16 |
+
CUDA_HOME /usr/local/cuda
|
17 |
+
Pillow 9.5.0
|
18 |
+
torchvision 0.15.1+cu118 @/usr/local/lib/python3.9/dist-packages/torchvision
|
19 |
+
torchvision arch flags 3.5, 5.0, 6.0, 7.0, 7.5, 8.0, 8.6
|
20 |
+
fvcore 0.1.3.post20210317
|
21 |
+
cv2 4.7.0
|
22 |
+
---------------------- ----------------------------------------------------------------
|
23 |
+
PyTorch built with:
|
24 |
+
- GCC 9.3
|
25 |
+
- C++ Version: 201703
|
26 |
+
- Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
|
27 |
+
- Intel(R) MKL-DNN v2.7.3 (Git Hash 6dbeffbae1f23cbbeae17adb7b5b13f1f37c080e)
|
28 |
+
- OpenMP 201511 (a.k.a. OpenMP 4.5)
|
29 |
+
- LAPACK is enabled (usually provided by MKL)
|
30 |
+
- NNPACK is enabled
|
31 |
+
- CPU capability usage: AVX2
|
32 |
+
- CUDA Runtime 11.8
|
33 |
+
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
|
34 |
+
- CuDNN 8.7
|
35 |
+
- Magma 2.6.1
|
36 |
+
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.0.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
|
37 |
+
|
38 |
+
[04/19 13:19:36] detectron2 INFO: Command line arguments: Namespace(config_file='/content/layout-model-training/config_LayoutParser_PrimaDataset.yaml', resume=False, eval_only=False, num_gpus=1, num_machines=1, machine_rank=0, dist_url='tcp://127.0.0.1:49152', opts=['OUTPUT_DIR', '/content/drive/MyDrive/layoutparser/modele', 'SOLVER.IMS_PER_BATCH', '2'], dataset_name='modele', json_annotation_train='/content/drive/MyDrive/layoutparser/dataset6/train/via_project_19Apr2023_15h0m_coco.json', image_path_train='/content/drive/MyDrive/layoutparser/dataset6/train', json_annotation_val='/content/drive/MyDrive/layoutparser/dataset6/val/via_project_19Apr2023_15h9m_coco.json', image_path_val='/content/drive/MyDrive/layoutparser/dataset6/val')
|
39 |
+
[04/19 13:19:36] detectron2 INFO: Contents of args.config_file=/content/layout-model-training/config_LayoutParser_PrimaDataset.yaml:
|
40 |
+
CUDNN_BENCHMARK: false
|
41 |
+
DATALOADER:
|
42 |
+
ASPECT_RATIO_GROUPING: true
|
43 |
+
FILTER_EMPTY_ANNOTATIONS: true
|
44 |
+
NUM_WORKERS: 4
|
45 |
+
REPEAT_THRESHOLD: 0.0
|
46 |
+
SAMPLER_TRAIN: TrainingSampler
|
47 |
+
DATASETS:
|
48 |
+
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
|
49 |
+
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
|
50 |
+
PROPOSAL_FILES_TEST: []
|
51 |
+
PROPOSAL_FILES_TRAIN: []
|
52 |
+
TEST:
|
53 |
+
- prima-layout-val
|
54 |
+
TRAIN:
|
55 |
+
- prima-layout-train
|
56 |
+
GLOBAL:
|
57 |
+
HACK: 1.0
|
58 |
+
INPUT:
|
59 |
+
CROP:
|
60 |
+
ENABLED: false
|
61 |
+
SIZE:
|
62 |
+
- 0.9
|
63 |
+
- 0.9
|
64 |
+
TYPE: relative_range
|
65 |
+
FORMAT: BGR
|
66 |
+
MASK_FORMAT: polygon
|
67 |
+
MAX_SIZE_TEST: 1333
|
68 |
+
MAX_SIZE_TRAIN: 1333
|
69 |
+
MIN_SIZE_TEST: 800
|
70 |
+
MIN_SIZE_TRAIN:
|
71 |
+
- 640
|
72 |
+
- 672
|
73 |
+
- 704
|
74 |
+
- 736
|
75 |
+
- 768
|
76 |
+
- 800
|
77 |
+
MIN_SIZE_TRAIN_SAMPLING: choice
|
78 |
+
MODEL:
|
79 |
+
ANCHOR_GENERATOR:
|
80 |
+
ANGLES:
|
81 |
+
- - -90
|
82 |
+
- 0
|
83 |
+
- 90
|
84 |
+
ASPECT_RATIOS:
|
85 |
+
- - 0.5
|
86 |
+
- 1.0
|
87 |
+
- 2.0
|
88 |
+
NAME: DefaultAnchorGenerator
|
89 |
+
OFFSET: 0.0
|
90 |
+
SIZES:
|
91 |
+
- - 32
|
92 |
+
- - 64
|
93 |
+
- - 128
|
94 |
+
- - 256
|
95 |
+
- - 512
|
96 |
+
BACKBONE:
|
97 |
+
FREEZE_AT: 2
|
98 |
+
NAME: build_resnet_fpn_backbone
|
99 |
+
DEVICE: cuda
|
100 |
+
FPN:
|
101 |
+
FUSE_TYPE: sum
|
102 |
+
IN_FEATURES:
|
103 |
+
- res2
|
104 |
+
- res3
|
105 |
+
- res4
|
106 |
+
- res5
|
107 |
+
NORM: ''
|
108 |
+
OUT_CHANNELS: 256
|
109 |
+
KEYPOINT_ON: false
|
110 |
+
LOAD_PROPOSALS: false
|
111 |
+
MASK_ON: true
|
112 |
+
META_ARCHITECTURE: GeneralizedRCNN
|
113 |
+
PANOPTIC_FPN:
|
114 |
+
COMBINE:
|
115 |
+
ENABLED: true
|
116 |
+
INSTANCES_CONFIDENCE_THRESH: 0.5
|
117 |
+
OVERLAP_THRESH: 0.5
|
118 |
+
STUFF_AREA_LIMIT: 4096
|
119 |
+
INSTANCE_LOSS_WEIGHT: 1.0
|
120 |
+
PIXEL_MEAN:
|
121 |
+
- 103.53
|
122 |
+
- 116.28
|
123 |
+
- 123.675
|
124 |
+
PIXEL_STD:
|
125 |
+
- 1.0
|
126 |
+
- 1.0
|
127 |
+
- 1.0
|
128 |
+
PROPOSAL_GENERATOR:
|
129 |
+
MIN_SIZE: 0
|
130 |
+
NAME: RPN
|
131 |
+
RESNETS:
|
132 |
+
DEFORM_MODULATED: false
|
133 |
+
DEFORM_NUM_GROUPS: 1
|
134 |
+
DEFORM_ON_PER_STAGE:
|
135 |
+
- false
|
136 |
+
- false
|
137 |
+
- false
|
138 |
+
- false
|
139 |
+
DEPTH: 50
|
140 |
+
NORM: FrozenBN
|
141 |
+
NUM_GROUPS: 1
|
142 |
+
OUT_FEATURES:
|
143 |
+
- res2
|
144 |
+
- res3
|
145 |
+
- res4
|
146 |
+
- res5
|
147 |
+
RES2_OUT_CHANNELS: 256
|
148 |
+
RES5_DILATION: 1
|
149 |
+
STEM_OUT_CHANNELS: 64
|
150 |
+
STRIDE_IN_1X1: true
|
151 |
+
WIDTH_PER_GROUP: 64
|
152 |
+
RETINANET:
|
153 |
+
BBOX_REG_WEIGHTS:
|
154 |
+
- 1.0
|
155 |
+
- 1.0
|
156 |
+
- 1.0
|
157 |
+
- 1.0
|
158 |
+
FOCAL_LOSS_ALPHA: 0.25
|
159 |
+
FOCAL_LOSS_GAMMA: 2.0
|
160 |
+
IN_FEATURES:
|
161 |
+
- p3
|
162 |
+
- p4
|
163 |
+
- p5
|
164 |
+
- p6
|
165 |
+
- p7
|
166 |
+
IOU_LABELS:
|
167 |
+
- 0
|
168 |
+
- -1
|
169 |
+
- 1
|
170 |
+
IOU_THRESHOLDS:
|
171 |
+
- 0.4
|
172 |
+
- 0.5
|
173 |
+
NMS_THRESH_TEST: 0.5
|
174 |
+
NUM_CLASSES: 80
|
175 |
+
NUM_CONVS: 4
|
176 |
+
PRIOR_PROB: 0.01
|
177 |
+
SCORE_THRESH_TEST: 0.05
|
178 |
+
SMOOTH_L1_LOSS_BETA: 0.1
|
179 |
+
TOPK_CANDIDATES_TEST: 1000
|
180 |
+
ROI_BOX_CASCADE_HEAD:
|
181 |
+
BBOX_REG_WEIGHTS:
|
182 |
+
- - 10.0
|
183 |
+
- 10.0
|
184 |
+
- 5.0
|
185 |
+
- 5.0
|
186 |
+
- - 20.0
|
187 |
+
- 20.0
|
188 |
+
- 10.0
|
189 |
+
- 10.0
|
190 |
+
- - 30.0
|
191 |
+
- 30.0
|
192 |
+
- 15.0
|
193 |
+
- 15.0
|
194 |
+
IOUS:
|
195 |
+
- 0.5
|
196 |
+
- 0.6
|
197 |
+
- 0.7
|
198 |
+
ROI_BOX_HEAD:
|
199 |
+
BBOX_REG_WEIGHTS:
|
200 |
+
- 10.0
|
201 |
+
- 10.0
|
202 |
+
- 5.0
|
203 |
+
- 5.0
|
204 |
+
CLS_AGNOSTIC_BBOX_REG: false
|
205 |
+
CONV_DIM: 256
|
206 |
+
FC_DIM: 1024
|
207 |
+
NAME: FastRCNNConvFCHead
|
208 |
+
NORM: ''
|
209 |
+
NUM_CONV: 0
|
210 |
+
NUM_FC: 2
|
211 |
+
POOLER_RESOLUTION: 7
|
212 |
+
POOLER_SAMPLING_RATIO: 0
|
213 |
+
POOLER_TYPE: ROIAlignV2
|
214 |
+
SMOOTH_L1_BETA: 0.0
|
215 |
+
TRAIN_ON_PRED_BOXES: false
|
216 |
+
ROI_HEADS:
|
217 |
+
BATCH_SIZE_PER_IMAGE: 512
|
218 |
+
IN_FEATURES:
|
219 |
+
- p2
|
220 |
+
- p3
|
221 |
+
- p4
|
222 |
+
- p5
|
223 |
+
IOU_LABELS:
|
224 |
+
- 0
|
225 |
+
- 1
|
226 |
+
IOU_THRESHOLDS:
|
227 |
+
- 0.5
|
228 |
+
NAME: StandardROIHeads
|
229 |
+
NMS_THRESH_TEST: 0.5
|
230 |
+
NUM_CLASSES: 7
|
231 |
+
POSITIVE_FRACTION: 0.25
|
232 |
+
PROPOSAL_APPEND_GT: true
|
233 |
+
SCORE_THRESH_TEST: 0.05
|
234 |
+
ROI_KEYPOINT_HEAD:
|
235 |
+
CONV_DIMS:
|
236 |
+
- 512
|
237 |
+
- 512
|
238 |
+
- 512
|
239 |
+
- 512
|
240 |
+
- 512
|
241 |
+
- 512
|
242 |
+
- 512
|
243 |
+
- 512
|
244 |
+
LOSS_WEIGHT: 1.0
|
245 |
+
MIN_KEYPOINTS_PER_IMAGE: 1
|
246 |
+
NAME: KRCNNConvDeconvUpsampleHead
|
247 |
+
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true
|
248 |
+
NUM_KEYPOINTS: 17
|
249 |
+
POOLER_RESOLUTION: 14
|
250 |
+
POOLER_SAMPLING_RATIO: 0
|
251 |
+
POOLER_TYPE: ROIAlignV2
|
252 |
+
ROI_MASK_HEAD:
|
253 |
+
CLS_AGNOSTIC_MASK: false
|
254 |
+
CONV_DIM: 256
|
255 |
+
NAME: MaskRCNNConvUpsampleHead
|
256 |
+
NORM: ''
|
257 |
+
NUM_CONV: 4
|
258 |
+
POOLER_RESOLUTION: 14
|
259 |
+
POOLER_SAMPLING_RATIO: 0
|
260 |
+
POOLER_TYPE: ROIAlignV2
|
261 |
+
RPN:
|
262 |
+
BATCH_SIZE_PER_IMAGE: 256
|
263 |
+
BBOX_REG_WEIGHTS:
|
264 |
+
- 1.0
|
265 |
+
- 1.0
|
266 |
+
- 1.0
|
267 |
+
- 1.0
|
268 |
+
BOUNDARY_THRESH: -1
|
269 |
+
HEAD_NAME: StandardRPNHead
|
270 |
+
IN_FEATURES:
|
271 |
+
- p2
|
272 |
+
- p3
|
273 |
+
- p4
|
274 |
+
- p5
|
275 |
+
- p6
|
276 |
+
IOU_LABELS:
|
277 |
+
- 0
|
278 |
+
- -1
|
279 |
+
- 1
|
280 |
+
IOU_THRESHOLDS:
|
281 |
+
- 0.3
|
282 |
+
- 0.7
|
283 |
+
LOSS_WEIGHT: 1.0
|
284 |
+
NMS_THRESH: 0.7
|
285 |
+
POSITIVE_FRACTION: 0.5
|
286 |
+
POST_NMS_TOPK_TEST: 1000
|
287 |
+
POST_NMS_TOPK_TRAIN: 1000
|
288 |
+
PRE_NMS_TOPK_TEST: 1000
|
289 |
+
PRE_NMS_TOPK_TRAIN: 2000
|
290 |
+
SMOOTH_L1_BETA: 0.0
|
291 |
+
SEM_SEG_HEAD:
|
292 |
+
COMMON_STRIDE: 4
|
293 |
+
CONVS_DIM: 128
|
294 |
+
IGNORE_VALUE: 255
|
295 |
+
IN_FEATURES:
|
296 |
+
- p2
|
297 |
+
- p3
|
298 |
+
- p4
|
299 |
+
- p5
|
300 |
+
LOSS_WEIGHT: 1.0
|
301 |
+
NAME: SemSegFPNHead
|
302 |
+
NORM: GN
|
303 |
+
NUM_CLASSES: 54
|
304 |
+
WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/
|
305 |
+
OUTPUT_DIR: ../outputs/prima/mask_rcnn_R_50_FPN_3x/
|
306 |
+
SEED: -1
|
307 |
+
SOLVER:
|
308 |
+
BASE_LR: 0.00025
|
309 |
+
BIAS_LR_FACTOR: 1.0
|
310 |
+
CHECKPOINT_PERIOD: 50
|
311 |
+
CLIP_GRADIENTS:
|
312 |
+
CLIP_TYPE: value
|
313 |
+
CLIP_VALUE: 1.0
|
314 |
+
ENABLED: false
|
315 |
+
NORM_TYPE: 2.0
|
316 |
+
GAMMA: 0.1
|
317 |
+
IMS_PER_BATCH: 2
|
318 |
+
LR_SCHEDULER_NAME: WarmupMultiStepLR
|
319 |
+
MAX_ITER: 300
|
320 |
+
MOMENTUM: 0.9
|
321 |
+
NESTEROV: false
|
322 |
+
STEPS:
|
323 |
+
- 210000
|
324 |
+
- 250000
|
325 |
+
WARMUP_FACTOR: 0.001
|
326 |
+
WARMUP_ITERS: 1000
|
327 |
+
WARMUP_METHOD: linear
|
328 |
+
WEIGHT_DECAY: 0.0001
|
329 |
+
WEIGHT_DECAY_BIAS: 0.0001
|
330 |
+
WEIGHT_DECAY_NORM: 0.0
|
331 |
+
TEST:
|
332 |
+
AUG:
|
333 |
+
ENABLED: false
|
334 |
+
FLIP: true
|
335 |
+
MAX_SIZE: 4000
|
336 |
+
MIN_SIZES:
|
337 |
+
- 400
|
338 |
+
- 500
|
339 |
+
- 600
|
340 |
+
- 700
|
341 |
+
- 800
|
342 |
+
- 900
|
343 |
+
- 1000
|
344 |
+
- 1100
|
345 |
+
- 1200
|
346 |
+
DETECTIONS_PER_IMAGE: 100
|
347 |
+
EVAL_PERIOD: 0
|
348 |
+
EXPECTED_RESULTS: []
|
349 |
+
KEYPOINT_OKS_SIGMAS: []
|
350 |
+
PRECISE_BN:
|
351 |
+
ENABLED: false
|
352 |
+
NUM_ITER: 200
|
353 |
+
VERSION: 2
|
354 |
+
VIS_PERIOD: 0
|
355 |
+
|
356 |
+
[04/19 13:19:36] detectron2 INFO: Running with full config:
|
357 |
+
CUDNN_BENCHMARK: False
|
358 |
+
DATALOADER:
|
359 |
+
ASPECT_RATIO_GROUPING: True
|
360 |
+
FILTER_EMPTY_ANNOTATIONS: True
|
361 |
+
NUM_WORKERS: 4
|
362 |
+
REPEAT_THRESHOLD: 0.0
|
363 |
+
SAMPLER_TRAIN: TrainingSampler
|
364 |
+
DATASETS:
|
365 |
+
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
|
366 |
+
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
|
367 |
+
PROPOSAL_FILES_TEST: ()
|
368 |
+
PROPOSAL_FILES_TRAIN: ()
|
369 |
+
TEST: ('modele-val',)
|
370 |
+
TRAIN: ('modele-train',)
|
371 |
+
GLOBAL:
|
372 |
+
HACK: 1.0
|
373 |
+
INPUT:
|
374 |
+
CROP:
|
375 |
+
ENABLED: False
|
376 |
+
SIZE: [0.9, 0.9]
|
377 |
+
TYPE: relative_range
|
378 |
+
FORMAT: BGR
|
379 |
+
MASK_FORMAT: polygon
|
380 |
+
MAX_SIZE_TEST: 1333
|
381 |
+
MAX_SIZE_TRAIN: 1333
|
382 |
+
MIN_SIZE_TEST: 800
|
383 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
384 |
+
MIN_SIZE_TRAIN_SAMPLING: choice
|
385 |
+
RANDOM_FLIP: horizontal
|
386 |
+
MODEL:
|
387 |
+
ANCHOR_GENERATOR:
|
388 |
+
ANGLES: [[-90, 0, 90]]
|
389 |
+
ASPECT_RATIOS: [[0.5, 1.0, 2.0]]
|
390 |
+
NAME: DefaultAnchorGenerator
|
391 |
+
OFFSET: 0.0
|
392 |
+
SIZES: [[32], [64], [128], [256], [512]]
|
393 |
+
BACKBONE:
|
394 |
+
FREEZE_AT: 2
|
395 |
+
NAME: build_resnet_fpn_backbone
|
396 |
+
DEVICE: cuda
|
397 |
+
FPN:
|
398 |
+
FUSE_TYPE: sum
|
399 |
+
IN_FEATURES: ['res2', 'res3', 'res4', 'res5']
|
400 |
+
NORM:
|
401 |
+
OUT_CHANNELS: 256
|
402 |
+
KEYPOINT_ON: False
|
403 |
+
LOAD_PROPOSALS: False
|
404 |
+
MASK_ON: True
|
405 |
+
META_ARCHITECTURE: GeneralizedRCNN
|
406 |
+
PANOPTIC_FPN:
|
407 |
+
COMBINE:
|
408 |
+
ENABLED: True
|
409 |
+
INSTANCES_CONFIDENCE_THRESH: 0.5
|
410 |
+
OVERLAP_THRESH: 0.5
|
411 |
+
STUFF_AREA_LIMIT: 4096
|
412 |
+
INSTANCE_LOSS_WEIGHT: 1.0
|
413 |
+
PIXEL_MEAN: [103.53, 116.28, 123.675]
|
414 |
+
PIXEL_STD: [1.0, 1.0, 1.0]
|
415 |
+
PROPOSAL_GENERATOR:
|
416 |
+
MIN_SIZE: 0
|
417 |
+
NAME: RPN
|
418 |
+
RESNETS:
|
419 |
+
DEFORM_MODULATED: False
|
420 |
+
DEFORM_NUM_GROUPS: 1
|
421 |
+
DEFORM_ON_PER_STAGE: [False, False, False, False]
|
422 |
+
DEPTH: 50
|
423 |
+
NORM: FrozenBN
|
424 |
+
NUM_GROUPS: 1
|
425 |
+
OUT_FEATURES: ['res2', 'res3', 'res4', 'res5']
|
426 |
+
RES2_OUT_CHANNELS: 256
|
427 |
+
RES5_DILATION: 1
|
428 |
+
STEM_OUT_CHANNELS: 64
|
429 |
+
STRIDE_IN_1X1: True
|
430 |
+
WIDTH_PER_GROUP: 64
|
431 |
+
RETINANET:
|
432 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
433 |
+
BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0)
|
434 |
+
FOCAL_LOSS_ALPHA: 0.25
|
435 |
+
FOCAL_LOSS_GAMMA: 2.0
|
436 |
+
IN_FEATURES: ['p3', 'p4', 'p5', 'p6', 'p7']
|
437 |
+
IOU_LABELS: [0, -1, 1]
|
438 |
+
IOU_THRESHOLDS: [0.4, 0.5]
|
439 |
+
NMS_THRESH_TEST: 0.5
|
440 |
+
NORM:
|
441 |
+
NUM_CLASSES: 80
|
442 |
+
NUM_CONVS: 4
|
443 |
+
PRIOR_PROB: 0.01
|
444 |
+
SCORE_THRESH_TEST: 0.05
|
445 |
+
SMOOTH_L1_LOSS_BETA: 0.1
|
446 |
+
TOPK_CANDIDATES_TEST: 1000
|
447 |
+
ROI_BOX_CASCADE_HEAD:
|
448 |
+
BBOX_REG_WEIGHTS: ([10.0, 10.0, 5.0, 5.0], [20.0, 20.0, 10.0, 10.0], [30.0, 30.0, 15.0, 15.0])
|
449 |
+
IOUS: (0.5, 0.6, 0.7)
|
450 |
+
ROI_BOX_HEAD:
|
451 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
452 |
+
BBOX_REG_LOSS_WEIGHT: 1.0
|
453 |
+
BBOX_REG_WEIGHTS: (10.0, 10.0, 5.0, 5.0)
|
454 |
+
CLS_AGNOSTIC_BBOX_REG: False
|
455 |
+
CONV_DIM: 256
|
456 |
+
FC_DIM: 1024
|
457 |
+
NAME: FastRCNNConvFCHead
|
458 |
+
NORM:
|
459 |
+
NUM_CONV: 0
|
460 |
+
NUM_FC: 2
|
461 |
+
POOLER_RESOLUTION: 7
|
462 |
+
POOLER_SAMPLING_RATIO: 0
|
463 |
+
POOLER_TYPE: ROIAlignV2
|
464 |
+
SMOOTH_L1_BETA: 0.0
|
465 |
+
TRAIN_ON_PRED_BOXES: False
|
466 |
+
ROI_HEADS:
|
467 |
+
BATCH_SIZE_PER_IMAGE: 512
|
468 |
+
IN_FEATURES: ['p2', 'p3', 'p4', 'p5']
|
469 |
+
IOU_LABELS: [0, 1]
|
470 |
+
IOU_THRESHOLDS: [0.5]
|
471 |
+
NAME: StandardROIHeads
|
472 |
+
NMS_THRESH_TEST: 0.5
|
473 |
+
NUM_CLASSES: 2
|
474 |
+
POSITIVE_FRACTION: 0.25
|
475 |
+
PROPOSAL_APPEND_GT: True
|
476 |
+
SCORE_THRESH_TEST: 0.05
|
477 |
+
ROI_KEYPOINT_HEAD:
|
478 |
+
CONV_DIMS: (512, 512, 512, 512, 512, 512, 512, 512)
|
479 |
+
LOSS_WEIGHT: 1.0
|
480 |
+
MIN_KEYPOINTS_PER_IMAGE: 1
|
481 |
+
NAME: KRCNNConvDeconvUpsampleHead
|
482 |
+
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: True
|
483 |
+
NUM_KEYPOINTS: 17
|
484 |
+
POOLER_RESOLUTION: 14
|
485 |
+
POOLER_SAMPLING_RATIO: 0
|
486 |
+
POOLER_TYPE: ROIAlignV2
|
487 |
+
ROI_MASK_HEAD:
|
488 |
+
CLS_AGNOSTIC_MASK: False
|
489 |
+
CONV_DIM: 256
|
490 |
+
NAME: MaskRCNNConvUpsampleHead
|
491 |
+
NORM:
|
492 |
+
NUM_CONV: 4
|
493 |
+
POOLER_RESOLUTION: 14
|
494 |
+
POOLER_SAMPLING_RATIO: 0
|
495 |
+
POOLER_TYPE: ROIAlignV2
|
496 |
+
RPN:
|
497 |
+
BATCH_SIZE_PER_IMAGE: 256
|
498 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
499 |
+
BBOX_REG_LOSS_WEIGHT: 1.0
|
500 |
+
BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0)
|
501 |
+
BOUNDARY_THRESH: -1
|
502 |
+
HEAD_NAME: StandardRPNHead
|
503 |
+
IN_FEATURES: ['p2', 'p3', 'p4', 'p5', 'p6']
|
504 |
+
IOU_LABELS: [0, -1, 1]
|
505 |
+
IOU_THRESHOLDS: [0.3, 0.7]
|
506 |
+
LOSS_WEIGHT: 1.0
|
507 |
+
NMS_THRESH: 0.7
|
508 |
+
POSITIVE_FRACTION: 0.5
|
509 |
+
POST_NMS_TOPK_TEST: 1000
|
510 |
+
POST_NMS_TOPK_TRAIN: 1000
|
511 |
+
PRE_NMS_TOPK_TEST: 1000
|
512 |
+
PRE_NMS_TOPK_TRAIN: 2000
|
513 |
+
SMOOTH_L1_BETA: 0.0
|
514 |
+
SEM_SEG_HEAD:
|
515 |
+
COMMON_STRIDE: 4
|
516 |
+
CONVS_DIM: 128
|
517 |
+
IGNORE_VALUE: 255
|
518 |
+
IN_FEATURES: ['p2', 'p3', 'p4', 'p5']
|
519 |
+
LOSS_WEIGHT: 1.0
|
520 |
+
NAME: SemSegFPNHead
|
521 |
+
NORM: GN
|
522 |
+
NUM_CLASSES: 54
|
523 |
+
WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/
|
524 |
+
OUTPUT_DIR: /content/drive/MyDrive/layoutparser/modele
|
525 |
+
SEED: -1
|
526 |
+
SOLVER:
|
527 |
+
AMP:
|
528 |
+
ENABLED: False
|
529 |
+
BASE_LR: 0.00025
|
530 |
+
BIAS_LR_FACTOR: 1.0
|
531 |
+
CHECKPOINT_PERIOD: 50
|
532 |
+
CLIP_GRADIENTS:
|
533 |
+
CLIP_TYPE: value
|
534 |
+
CLIP_VALUE: 1.0
|
535 |
+
ENABLED: False
|
536 |
+
NORM_TYPE: 2.0
|
537 |
+
GAMMA: 0.1
|
538 |
+
IMS_PER_BATCH: 2
|
539 |
+
LR_SCHEDULER_NAME: WarmupMultiStepLR
|
540 |
+
MAX_ITER: 300
|
541 |
+
MOMENTUM: 0.9
|
542 |
+
NESTEROV: False
|
543 |
+
REFERENCE_WORLD_SIZE: 0
|
544 |
+
STEPS: (210000, 250000)
|
545 |
+
WARMUP_FACTOR: 0.001
|
546 |
+
WARMUP_ITERS: 1000
|
547 |
+
WARMUP_METHOD: linear
|
548 |
+
WEIGHT_DECAY: 0.0001
|
549 |
+
WEIGHT_DECAY_BIAS: 0.0001
|
550 |
+
WEIGHT_DECAY_NORM: 0.0
|
551 |
+
TEST:
|
552 |
+
AUG:
|
553 |
+
ENABLED: False
|
554 |
+
FLIP: True
|
555 |
+
MAX_SIZE: 4000
|
556 |
+
MIN_SIZES: (400, 500, 600, 700, 800, 900, 1000, 1100, 1200)
|
557 |
+
DETECTIONS_PER_IMAGE: 100
|
558 |
+
EVAL_PERIOD: 0
|
559 |
+
EXPECTED_RESULTS: []
|
560 |
+
KEYPOINT_OKS_SIGMAS: []
|
561 |
+
PRECISE_BN:
|
562 |
+
ENABLED: False
|
563 |
+
NUM_ITER: 200
|
564 |
+
VERSION: 2
|
565 |
+
VIS_PERIOD: 0
|
566 |
+
[04/19 13:19:36] detectron2 INFO: Full config saved to /content/drive/MyDrive/layoutparser/modele/config.yaml
|
567 |
+
[04/19 13:19:36] d2.utils.env INFO: Using a generated random seed 36661240
|
568 |
+
[04/19 13:19:43] d2.engine.defaults INFO: Model:
|
569 |
+
GeneralizedRCNN(
|
570 |
+
(backbone): FPN(
|
571 |
+
(fpn_lateral2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
|
572 |
+
(fpn_output2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
573 |
+
(fpn_lateral3): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
|
574 |
+
(fpn_output3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
575 |
+
(fpn_lateral4): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
|
576 |
+
(fpn_output4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
577 |
+
(fpn_lateral5): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
|
578 |
+
(fpn_output5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
579 |
+
(top_block): LastLevelMaxPool()
|
580 |
+
(bottom_up): ResNet(
|
581 |
+
(stem): BasicStem(
|
582 |
+
(conv1): Conv2d(
|
583 |
+
3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False
|
584 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
585 |
+
)
|
586 |
+
)
|
587 |
+
(res2): Sequential(
|
588 |
+
(0): BottleneckBlock(
|
589 |
+
(shortcut): Conv2d(
|
590 |
+
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
591 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
592 |
+
)
|
593 |
+
(conv1): Conv2d(
|
594 |
+
64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
|
595 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
596 |
+
)
|
597 |
+
(conv2): Conv2d(
|
598 |
+
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
599 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
600 |
+
)
|
601 |
+
(conv3): Conv2d(
|
602 |
+
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
603 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
604 |
+
)
|
605 |
+
)
|
606 |
+
(1): BottleneckBlock(
|
607 |
+
(conv1): Conv2d(
|
608 |
+
256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
|
609 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
610 |
+
)
|
611 |
+
(conv2): Conv2d(
|
612 |
+
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
613 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
614 |
+
)
|
615 |
+
(conv3): Conv2d(
|
616 |
+
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
617 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
618 |
+
)
|
619 |
+
)
|
620 |
+
(2): BottleneckBlock(
|
621 |
+
(conv1): Conv2d(
|
622 |
+
256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
|
623 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
624 |
+
)
|
625 |
+
(conv2): Conv2d(
|
626 |
+
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
627 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
628 |
+
)
|
629 |
+
(conv3): Conv2d(
|
630 |
+
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
631 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
632 |
+
)
|
633 |
+
)
|
634 |
+
)
|
635 |
+
(res3): Sequential(
|
636 |
+
(0): BottleneckBlock(
|
637 |
+
(shortcut): Conv2d(
|
638 |
+
256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
|
639 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
640 |
+
)
|
641 |
+
(conv1): Conv2d(
|
642 |
+
256, 128, kernel_size=(1, 1), stride=(2, 2), bias=False
|
643 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
644 |
+
)
|
645 |
+
(conv2): Conv2d(
|
646 |
+
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
647 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
648 |
+
)
|
649 |
+
(conv3): Conv2d(
|
650 |
+
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
651 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
652 |
+
)
|
653 |
+
)
|
654 |
+
(1): BottleneckBlock(
|
655 |
+
(conv1): Conv2d(
|
656 |
+
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
|
657 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
658 |
+
)
|
659 |
+
(conv2): Conv2d(
|
660 |
+
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
661 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
662 |
+
)
|
663 |
+
(conv3): Conv2d(
|
664 |
+
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
665 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
666 |
+
)
|
667 |
+
)
|
668 |
+
(2): BottleneckBlock(
|
669 |
+
(conv1): Conv2d(
|
670 |
+
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
|
671 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
672 |
+
)
|
673 |
+
(conv2): Conv2d(
|
674 |
+
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
675 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
676 |
+
)
|
677 |
+
(conv3): Conv2d(
|
678 |
+
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
679 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
680 |
+
)
|
681 |
+
)
|
682 |
+
(3): BottleneckBlock(
|
683 |
+
(conv1): Conv2d(
|
684 |
+
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
|
685 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
686 |
+
)
|
687 |
+
(conv2): Conv2d(
|
688 |
+
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
689 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
690 |
+
)
|
691 |
+
(conv3): Conv2d(
|
692 |
+
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
693 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
694 |
+
)
|
695 |
+
)
|
696 |
+
)
|
697 |
+
(res4): Sequential(
|
698 |
+
(0): BottleneckBlock(
|
699 |
+
(shortcut): Conv2d(
|
700 |
+
512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False
|
701 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
702 |
+
)
|
703 |
+
(conv1): Conv2d(
|
704 |
+
512, 256, kernel_size=(1, 1), stride=(2, 2), bias=False
|
705 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
706 |
+
)
|
707 |
+
(conv2): Conv2d(
|
708 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
709 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
710 |
+
)
|
711 |
+
(conv3): Conv2d(
|
712 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
713 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
714 |
+
)
|
715 |
+
)
|
716 |
+
(1): BottleneckBlock(
|
717 |
+
(conv1): Conv2d(
|
718 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
719 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
720 |
+
)
|
721 |
+
(conv2): Conv2d(
|
722 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
723 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
724 |
+
)
|
725 |
+
(conv3): Conv2d(
|
726 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
727 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
728 |
+
)
|
729 |
+
)
|
730 |
+
(2): BottleneckBlock(
|
731 |
+
(conv1): Conv2d(
|
732 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
733 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
734 |
+
)
|
735 |
+
(conv2): Conv2d(
|
736 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
737 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
738 |
+
)
|
739 |
+
(conv3): Conv2d(
|
740 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
741 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
742 |
+
)
|
743 |
+
)
|
744 |
+
(3): BottleneckBlock(
|
745 |
+
(conv1): Conv2d(
|
746 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
747 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
748 |
+
)
|
749 |
+
(conv2): Conv2d(
|
750 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
751 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
752 |
+
)
|
753 |
+
(conv3): Conv2d(
|
754 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
755 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
756 |
+
)
|
757 |
+
)
|
758 |
+
(4): BottleneckBlock(
|
759 |
+
(conv1): Conv2d(
|
760 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
761 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
762 |
+
)
|
763 |
+
(conv2): Conv2d(
|
764 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
765 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
766 |
+
)
|
767 |
+
(conv3): Conv2d(
|
768 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
769 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
770 |
+
)
|
771 |
+
)
|
772 |
+
(5): BottleneckBlock(
|
773 |
+
(conv1): Conv2d(
|
774 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
775 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
776 |
+
)
|
777 |
+
(conv2): Conv2d(
|
778 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
779 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
780 |
+
)
|
781 |
+
(conv3): Conv2d(
|
782 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
783 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
784 |
+
)
|
785 |
+
)
|
786 |
+
)
|
787 |
+
(res5): Sequential(
|
788 |
+
(0): BottleneckBlock(
|
789 |
+
(shortcut): Conv2d(
|
790 |
+
1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False
|
791 |
+
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
|
792 |
+
)
|
793 |
+
(conv1): Conv2d(
|
794 |
+
1024, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
|
795 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
796 |
+
)
|
797 |
+
(conv2): Conv2d(
|
798 |
+
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
799 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
800 |
+
)
|
801 |
+
(conv3): Conv2d(
|
802 |
+
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
|
803 |
+
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
|
804 |
+
)
|
805 |
+
)
|
806 |
+
(1): BottleneckBlock(
|
807 |
+
(conv1): Conv2d(
|
808 |
+
2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
809 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
810 |
+
)
|
811 |
+
(conv2): Conv2d(
|
812 |
+
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
813 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
814 |
+
)
|
815 |
+
(conv3): Conv2d(
|
816 |
+
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
|
817 |
+
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
|
818 |
+
)
|
819 |
+
)
|
820 |
+
(2): BottleneckBlock(
|
821 |
+
(conv1): Conv2d(
|
822 |
+
2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
823 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
824 |
+
)
|
825 |
+
(conv2): Conv2d(
|
826 |
+
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
827 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
828 |
+
)
|
829 |
+
(conv3): Conv2d(
|
830 |
+
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
|
831 |
+
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
|
832 |
+
)
|
833 |
+
)
|
834 |
+
)
|
835 |
+
)
|
836 |
+
)
|
837 |
+
(proposal_generator): RPN(
|
838 |
+
(rpn_head): StandardRPNHead(
|
839 |
+
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
840 |
+
(objectness_logits): Conv2d(256, 3, kernel_size=(1, 1), stride=(1, 1))
|
841 |
+
(anchor_deltas): Conv2d(256, 12, kernel_size=(1, 1), stride=(1, 1))
|
842 |
+
)
|
843 |
+
(anchor_generator): DefaultAnchorGenerator(
|
844 |
+
(cell_anchors): BufferList()
|
845 |
+
)
|
846 |
+
)
|
847 |
+
(roi_heads): StandardROIHeads(
|
848 |
+
(box_pooler): ROIPooler(
|
849 |
+
(level_poolers): ModuleList(
|
850 |
+
(0): ROIAlign(output_size=(7, 7), spatial_scale=0.25, sampling_ratio=0, aligned=True)
|
851 |
+
(1): ROIAlign(output_size=(7, 7), spatial_scale=0.125, sampling_ratio=0, aligned=True)
|
852 |
+
(2): ROIAlign(output_size=(7, 7), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
|
853 |
+
(3): ROIAlign(output_size=(7, 7), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
|
854 |
+
)
|
855 |
+
)
|
856 |
+
(box_head): FastRCNNConvFCHead(
|
857 |
+
(flatten): Flatten(start_dim=1, end_dim=-1)
|
858 |
+
(fc1): Linear(in_features=12544, out_features=1024, bias=True)
|
859 |
+
(fc_relu1): ReLU()
|
860 |
+
(fc2): Linear(in_features=1024, out_features=1024, bias=True)
|
861 |
+
(fc_relu2): ReLU()
|
862 |
+
)
|
863 |
+
(box_predictor): FastRCNNOutputLayers(
|
864 |
+
(cls_score): Linear(in_features=1024, out_features=3, bias=True)
|
865 |
+
(bbox_pred): Linear(in_features=1024, out_features=8, bias=True)
|
866 |
+
)
|
867 |
+
(mask_pooler): ROIPooler(
|
868 |
+
(level_poolers): ModuleList(
|
869 |
+
(0): ROIAlign(output_size=(14, 14), spatial_scale=0.25, sampling_ratio=0, aligned=True)
|
870 |
+
(1): ROIAlign(output_size=(14, 14), spatial_scale=0.125, sampling_ratio=0, aligned=True)
|
871 |
+
(2): ROIAlign(output_size=(14, 14), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
|
872 |
+
(3): ROIAlign(output_size=(14, 14), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
|
873 |
+
)
|
874 |
+
)
|
875 |
+
(mask_head): MaskRCNNConvUpsampleHead(
|
876 |
+
(mask_fcn1): Conv2d(
|
877 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
878 |
+
(activation): ReLU()
|
879 |
+
)
|
880 |
+
(mask_fcn2): Conv2d(
|
881 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
882 |
+
(activation): ReLU()
|
883 |
+
)
|
884 |
+
(mask_fcn3): Conv2d(
|
885 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
886 |
+
(activation): ReLU()
|
887 |
+
)
|
888 |
+
(mask_fcn4): Conv2d(
|
889 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
890 |
+
(activation): ReLU()
|
891 |
+
)
|
892 |
+
(deconv): ConvTranspose2d(256, 256, kernel_size=(2, 2), stride=(2, 2))
|
893 |
+
(deconv_relu): ReLU()
|
894 |
+
(predictor): Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1))
|
895 |
+
)
|
896 |
+
)
|
897 |
+
)
|
898 |
+
[04/19 13:19:43] d2.data.dataset_mapper INFO: [DatasetMapper] Augmentations used in training: [ResizeShortestEdge(short_edge_length=(640, 672, 704, 736, 768, 800), max_size=1333, sample_style='choice'), RandomFlip(), RandomRotation(angle=[-90.0, 0.0])]
|
899 |
+
[04/19 13:19:43] d2.data.datasets.coco INFO: Loaded 36 images in COCO format from /content/drive/MyDrive/layoutparser/dataset6/train/via_project_19Apr2023_15h0m_coco.json
|
900 |
+
[04/19 13:19:43] d2.data.build INFO: Removed 6 images with no usable annotations. 30 images left.
|
901 |
+
[04/19 13:19:43] d2.data.build INFO: Distribution of instances among all 2 categories:
|
902 |
+
[36m| category | #instances | category | #instances |
|
903 |
+
|:----------:|:-------------|:----------:|:-------------|
|
904 |
+
| | 89 | | 0 |
|
905 |
+
| | | | |
|
906 |
+
| total | 89 | | |[0m
|
907 |
+
[04/19 13:19:43] d2.data.build INFO: Using training sampler TrainingSampler
|
908 |
+
[04/19 13:19:43] d2.data.common INFO: Serializing 30 elements to byte tensors and concatenating them all ...
|
909 |
+
[04/19 13:19:43] d2.data.common INFO: Serialized dataset takes 0.01 MiB
|
910 |
+
[04/19 13:19:43] d2.solver.build WARNING: SOLVER.STEPS contains values larger than SOLVER.MAX_ITER. These values will be ignored.
|
911 |
+
[04/19 13:19:45] fvcore.common.checkpoint INFO: Loading checkpoint from /content/drive/MyDrive/layoutparser/modele/modele3_NP?/
|
912 |
+
[04/19 13:20:18] detectron2 INFO: Rank of current process: 0. World size: 1
|
913 |
+
[04/19 13:20:20] detectron2 INFO: Environment info:
|
914 |
+
---------------------- ----------------------------------------------------------------
|
915 |
+
sys.platform linux
|
916 |
+
Python 3.9.16 (main, Dec 7 2022, 01:11:51) [GCC 9.4.0]
|
917 |
+
numpy 1.22.4
|
918 |
+
detectron2 0.4 @/usr/local/lib/python3.9/dist-packages/detectron2
|
919 |
+
Compiler GCC 9.4
|
920 |
+
CUDA compiler CUDA 11.8
|
921 |
+
detectron2 arch flags 7.5
|
922 |
+
DETECTRON2_ENV_MODULE <not set>
|
923 |
+
PyTorch 2.0.0+cu118 @/usr/local/lib/python3.9/dist-packages/torch
|
924 |
+
PyTorch debug build False
|
925 |
+
GPU available True
|
926 |
+
GPU 0 Tesla T4 (arch=7.5)
|
927 |
+
CUDA_HOME /usr/local/cuda
|
928 |
+
Pillow 9.5.0
|
929 |
+
torchvision 0.15.1+cu118 @/usr/local/lib/python3.9/dist-packages/torchvision
|
930 |
+
torchvision arch flags 3.5, 5.0, 6.0, 7.0, 7.5, 8.0, 8.6
|
931 |
+
fvcore 0.1.3.post20210317
|
932 |
+
cv2 4.7.0
|
933 |
+
---------------------- ----------------------------------------------------------------
|
934 |
+
PyTorch built with:
|
935 |
+
- GCC 9.3
|
936 |
+
- C++ Version: 201703
|
937 |
+
- Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
|
938 |
+
- Intel(R) MKL-DNN v2.7.3 (Git Hash 6dbeffbae1f23cbbeae17adb7b5b13f1f37c080e)
|
939 |
+
- OpenMP 201511 (a.k.a. OpenMP 4.5)
|
940 |
+
- LAPACK is enabled (usually provided by MKL)
|
941 |
+
- NNPACK is enabled
|
942 |
+
- CPU capability usage: AVX2
|
943 |
+
- CUDA Runtime 11.8
|
944 |
+
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
|
945 |
+
- CuDNN 8.7
|
946 |
+
- Magma 2.6.1
|
947 |
+
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.0.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
|
948 |
+
|
949 |
+
[04/19 13:20:20] detectron2 INFO: Command line arguments: Namespace(config_file='/content/layout-model-training/config_LayoutParser_PrimaDataset.yaml', resume=False, eval_only=False, num_gpus=1, num_machines=1, machine_rank=0, dist_url='tcp://127.0.0.1:49152', opts=['OUTPUT_DIR', '/content/drive/MyDrive/layoutparser/modele', 'SOLVER.IMS_PER_BATCH', '2'], dataset_name='modele', json_annotation_train='/content/drive/MyDrive/layoutparser/dataset6/train/via_project_19Apr2023_15h0m_coco.json', image_path_train='/content/drive/MyDrive/layoutparser/dataset6/train', json_annotation_val='/content/drive/MyDrive/layoutparser/dataset6/val/via_project_19Apr2023_15h9m_coco.json', image_path_val='/content/drive/MyDrive/layoutparser/dataset6/val')
|
950 |
+
[04/19 13:20:20] detectron2 INFO: Contents of args.config_file=/content/layout-model-training/config_LayoutParser_PrimaDataset.yaml:
|
951 |
+
CUDNN_BENCHMARK: false
|
952 |
+
DATALOADER:
|
953 |
+
ASPECT_RATIO_GROUPING: true
|
954 |
+
FILTER_EMPTY_ANNOTATIONS: true
|
955 |
+
NUM_WORKERS: 4
|
956 |
+
REPEAT_THRESHOLD: 0.0
|
957 |
+
SAMPLER_TRAIN: TrainingSampler
|
958 |
+
DATASETS:
|
959 |
+
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
|
960 |
+
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
|
961 |
+
PROPOSAL_FILES_TEST: []
|
962 |
+
PROPOSAL_FILES_TRAIN: []
|
963 |
+
TEST:
|
964 |
+
- prima-layout-val
|
965 |
+
TRAIN:
|
966 |
+
- prima-layout-train
|
967 |
+
GLOBAL:
|
968 |
+
HACK: 1.0
|
969 |
+
INPUT:
|
970 |
+
CROP:
|
971 |
+
ENABLED: false
|
972 |
+
SIZE:
|
973 |
+
- 0.9
|
974 |
+
- 0.9
|
975 |
+
TYPE: relative_range
|
976 |
+
FORMAT: BGR
|
977 |
+
MASK_FORMAT: polygon
|
978 |
+
MAX_SIZE_TEST: 1333
|
979 |
+
MAX_SIZE_TRAIN: 1333
|
980 |
+
MIN_SIZE_TEST: 800
|
981 |
+
MIN_SIZE_TRAIN:
|
982 |
+
- 640
|
983 |
+
- 672
|
984 |
+
- 704
|
985 |
+
- 736
|
986 |
+
- 768
|
987 |
+
- 800
|
988 |
+
MIN_SIZE_TRAIN_SAMPLING: choice
|
989 |
+
MODEL:
|
990 |
+
ANCHOR_GENERATOR:
|
991 |
+
ANGLES:
|
992 |
+
- - -90
|
993 |
+
- 0
|
994 |
+
- 90
|
995 |
+
ASPECT_RATIOS:
|
996 |
+
- - 0.5
|
997 |
+
- 1.0
|
998 |
+
- 2.0
|
999 |
+
NAME: DefaultAnchorGenerator
|
1000 |
+
OFFSET: 0.0
|
1001 |
+
SIZES:
|
1002 |
+
- - 32
|
1003 |
+
- - 64
|
1004 |
+
- - 128
|
1005 |
+
- - 256
|
1006 |
+
- - 512
|
1007 |
+
BACKBONE:
|
1008 |
+
FREEZE_AT: 2
|
1009 |
+
NAME: build_resnet_fpn_backbone
|
1010 |
+
DEVICE: cuda
|
1011 |
+
FPN:
|
1012 |
+
FUSE_TYPE: sum
|
1013 |
+
IN_FEATURES:
|
1014 |
+
- res2
|
1015 |
+
- res3
|
1016 |
+
- res4
|
1017 |
+
- res5
|
1018 |
+
NORM: ''
|
1019 |
+
OUT_CHANNELS: 256
|
1020 |
+
KEYPOINT_ON: false
|
1021 |
+
LOAD_PROPOSALS: false
|
1022 |
+
MASK_ON: true
|
1023 |
+
META_ARCHITECTURE: GeneralizedRCNN
|
1024 |
+
PANOPTIC_FPN:
|
1025 |
+
COMBINE:
|
1026 |
+
ENABLED: true
|
1027 |
+
INSTANCES_CONFIDENCE_THRESH: 0.5
|
1028 |
+
OVERLAP_THRESH: 0.5
|
1029 |
+
STUFF_AREA_LIMIT: 4096
|
1030 |
+
INSTANCE_LOSS_WEIGHT: 1.0
|
1031 |
+
PIXEL_MEAN:
|
1032 |
+
- 103.53
|
1033 |
+
- 116.28
|
1034 |
+
- 123.675
|
1035 |
+
PIXEL_STD:
|
1036 |
+
- 1.0
|
1037 |
+
- 1.0
|
1038 |
+
- 1.0
|
1039 |
+
PROPOSAL_GENERATOR:
|
1040 |
+
MIN_SIZE: 0
|
1041 |
+
NAME: RPN
|
1042 |
+
RESNETS:
|
1043 |
+
DEFORM_MODULATED: false
|
1044 |
+
DEFORM_NUM_GROUPS: 1
|
1045 |
+
DEFORM_ON_PER_STAGE:
|
1046 |
+
- false
|
1047 |
+
- false
|
1048 |
+
- false
|
1049 |
+
- false
|
1050 |
+
DEPTH: 50
|
1051 |
+
NORM: FrozenBN
|
1052 |
+
NUM_GROUPS: 1
|
1053 |
+
OUT_FEATURES:
|
1054 |
+
- res2
|
1055 |
+
- res3
|
1056 |
+
- res4
|
1057 |
+
- res5
|
1058 |
+
RES2_OUT_CHANNELS: 256
|
1059 |
+
RES5_DILATION: 1
|
1060 |
+
STEM_OUT_CHANNELS: 64
|
1061 |
+
STRIDE_IN_1X1: true
|
1062 |
+
WIDTH_PER_GROUP: 64
|
1063 |
+
RETINANET:
|
1064 |
+
BBOX_REG_WEIGHTS:
|
1065 |
+
- 1.0
|
1066 |
+
- 1.0
|
1067 |
+
- 1.0
|
1068 |
+
- 1.0
|
1069 |
+
FOCAL_LOSS_ALPHA: 0.25
|
1070 |
+
FOCAL_LOSS_GAMMA: 2.0
|
1071 |
+
IN_FEATURES:
|
1072 |
+
- p3
|
1073 |
+
- p4
|
1074 |
+
- p5
|
1075 |
+
- p6
|
1076 |
+
- p7
|
1077 |
+
IOU_LABELS:
|
1078 |
+
- 0
|
1079 |
+
- -1
|
1080 |
+
- 1
|
1081 |
+
IOU_THRESHOLDS:
|
1082 |
+
- 0.4
|
1083 |
+
- 0.5
|
1084 |
+
NMS_THRESH_TEST: 0.5
|
1085 |
+
NUM_CLASSES: 80
|
1086 |
+
NUM_CONVS: 4
|
1087 |
+
PRIOR_PROB: 0.01
|
1088 |
+
SCORE_THRESH_TEST: 0.05
|
1089 |
+
SMOOTH_L1_LOSS_BETA: 0.1
|
1090 |
+
TOPK_CANDIDATES_TEST: 1000
|
1091 |
+
ROI_BOX_CASCADE_HEAD:
|
1092 |
+
BBOX_REG_WEIGHTS:
|
1093 |
+
- - 10.0
|
1094 |
+
- 10.0
|
1095 |
+
- 5.0
|
1096 |
+
- 5.0
|
1097 |
+
- - 20.0
|
1098 |
+
- 20.0
|
1099 |
+
- 10.0
|
1100 |
+
- 10.0
|
1101 |
+
- - 30.0
|
1102 |
+
- 30.0
|
1103 |
+
- 15.0
|
1104 |
+
- 15.0
|
1105 |
+
IOUS:
|
1106 |
+
- 0.5
|
1107 |
+
- 0.6
|
1108 |
+
- 0.7
|
1109 |
+
ROI_BOX_HEAD:
|
1110 |
+
BBOX_REG_WEIGHTS:
|
1111 |
+
- 10.0
|
1112 |
+
- 10.0
|
1113 |
+
- 5.0
|
1114 |
+
- 5.0
|
1115 |
+
CLS_AGNOSTIC_BBOX_REG: false
|
1116 |
+
CONV_DIM: 256
|
1117 |
+
FC_DIM: 1024
|
1118 |
+
NAME: FastRCNNConvFCHead
|
1119 |
+
NORM: ''
|
1120 |
+
NUM_CONV: 0
|
1121 |
+
NUM_FC: 2
|
1122 |
+
POOLER_RESOLUTION: 7
|
1123 |
+
POOLER_SAMPLING_RATIO: 0
|
1124 |
+
POOLER_TYPE: ROIAlignV2
|
1125 |
+
SMOOTH_L1_BETA: 0.0
|
1126 |
+
TRAIN_ON_PRED_BOXES: false
|
1127 |
+
ROI_HEADS:
|
1128 |
+
BATCH_SIZE_PER_IMAGE: 512
|
1129 |
+
IN_FEATURES:
|
1130 |
+
- p2
|
1131 |
+
- p3
|
1132 |
+
- p4
|
1133 |
+
- p5
|
1134 |
+
IOU_LABELS:
|
1135 |
+
- 0
|
1136 |
+
- 1
|
1137 |
+
IOU_THRESHOLDS:
|
1138 |
+
- 0.5
|
1139 |
+
NAME: StandardROIHeads
|
1140 |
+
NMS_THRESH_TEST: 0.5
|
1141 |
+
NUM_CLASSES: 7
|
1142 |
+
POSITIVE_FRACTION: 0.25
|
1143 |
+
PROPOSAL_APPEND_GT: true
|
1144 |
+
SCORE_THRESH_TEST: 0.05
|
1145 |
+
ROI_KEYPOINT_HEAD:
|
1146 |
+
CONV_DIMS:
|
1147 |
+
- 512
|
1148 |
+
- 512
|
1149 |
+
- 512
|
1150 |
+
- 512
|
1151 |
+
- 512
|
1152 |
+
- 512
|
1153 |
+
- 512
|
1154 |
+
- 512
|
1155 |
+
LOSS_WEIGHT: 1.0
|
1156 |
+
MIN_KEYPOINTS_PER_IMAGE: 1
|
1157 |
+
NAME: KRCNNConvDeconvUpsampleHead
|
1158 |
+
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true
|
1159 |
+
NUM_KEYPOINTS: 17
|
1160 |
+
POOLER_RESOLUTION: 14
|
1161 |
+
POOLER_SAMPLING_RATIO: 0
|
1162 |
+
POOLER_TYPE: ROIAlignV2
|
1163 |
+
ROI_MASK_HEAD:
|
1164 |
+
CLS_AGNOSTIC_MASK: false
|
1165 |
+
CONV_DIM: 256
|
1166 |
+
NAME: MaskRCNNConvUpsampleHead
|
1167 |
+
NORM: ''
|
1168 |
+
NUM_CONV: 4
|
1169 |
+
POOLER_RESOLUTION: 14
|
1170 |
+
POOLER_SAMPLING_RATIO: 0
|
1171 |
+
POOLER_TYPE: ROIAlignV2
|
1172 |
+
RPN:
|
1173 |
+
BATCH_SIZE_PER_IMAGE: 256
|
1174 |
+
BBOX_REG_WEIGHTS:
|
1175 |
+
- 1.0
|
1176 |
+
- 1.0
|
1177 |
+
- 1.0
|
1178 |
+
- 1.0
|
1179 |
+
BOUNDARY_THRESH: -1
|
1180 |
+
HEAD_NAME: StandardRPNHead
|
1181 |
+
IN_FEATURES:
|
1182 |
+
- p2
|
1183 |
+
- p3
|
1184 |
+
- p4
|
1185 |
+
- p5
|
1186 |
+
- p6
|
1187 |
+
IOU_LABELS:
|
1188 |
+
- 0
|
1189 |
+
- -1
|
1190 |
+
- 1
|
1191 |
+
IOU_THRESHOLDS:
|
1192 |
+
- 0.3
|
1193 |
+
- 0.7
|
1194 |
+
LOSS_WEIGHT: 1.0
|
1195 |
+
NMS_THRESH: 0.7
|
1196 |
+
POSITIVE_FRACTION: 0.5
|
1197 |
+
POST_NMS_TOPK_TEST: 1000
|
1198 |
+
POST_NMS_TOPK_TRAIN: 1000
|
1199 |
+
PRE_NMS_TOPK_TEST: 1000
|
1200 |
+
PRE_NMS_TOPK_TRAIN: 2000
|
1201 |
+
SMOOTH_L1_BETA: 0.0
|
1202 |
+
SEM_SEG_HEAD:
|
1203 |
+
COMMON_STRIDE: 4
|
1204 |
+
CONVS_DIM: 128
|
1205 |
+
IGNORE_VALUE: 255
|
1206 |
+
IN_FEATURES:
|
1207 |
+
- p2
|
1208 |
+
- p3
|
1209 |
+
- p4
|
1210 |
+
- p5
|
1211 |
+
LOSS_WEIGHT: 1.0
|
1212 |
+
NAME: SemSegFPNHead
|
1213 |
+
NORM: GN
|
1214 |
+
NUM_CLASSES: 54
|
1215 |
+
WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/modele_final.pth
|
1216 |
+
OUTPUT_DIR: ../outputs/prima/mask_rcnn_R_50_FPN_3x/
|
1217 |
+
SEED: -1
|
1218 |
+
SOLVER:
|
1219 |
+
BASE_LR: 0.00025
|
1220 |
+
BIAS_LR_FACTOR: 1.0
|
1221 |
+
CHECKPOINT_PERIOD: 50
|
1222 |
+
CLIP_GRADIENTS:
|
1223 |
+
CLIP_TYPE: value
|
1224 |
+
CLIP_VALUE: 1.0
|
1225 |
+
ENABLED: false
|
1226 |
+
NORM_TYPE: 2.0
|
1227 |
+
GAMMA: 0.1
|
1228 |
+
IMS_PER_BATCH: 2
|
1229 |
+
LR_SCHEDULER_NAME: WarmupMultiStepLR
|
1230 |
+
MAX_ITER: 300
|
1231 |
+
MOMENTUM: 0.9
|
1232 |
+
NESTEROV: false
|
1233 |
+
STEPS:
|
1234 |
+
- 210000
|
1235 |
+
- 250000
|
1236 |
+
WARMUP_FACTOR: 0.001
|
1237 |
+
WARMUP_ITERS: 1000
|
1238 |
+
WARMUP_METHOD: linear
|
1239 |
+
WEIGHT_DECAY: 0.0001
|
1240 |
+
WEIGHT_DECAY_BIAS: 0.0001
|
1241 |
+
WEIGHT_DECAY_NORM: 0.0
|
1242 |
+
TEST:
|
1243 |
+
AUG:
|
1244 |
+
ENABLED: false
|
1245 |
+
FLIP: true
|
1246 |
+
MAX_SIZE: 4000
|
1247 |
+
MIN_SIZES:
|
1248 |
+
- 400
|
1249 |
+
- 500
|
1250 |
+
- 600
|
1251 |
+
- 700
|
1252 |
+
- 800
|
1253 |
+
- 900
|
1254 |
+
- 1000
|
1255 |
+
- 1100
|
1256 |
+
- 1200
|
1257 |
+
DETECTIONS_PER_IMAGE: 100
|
1258 |
+
EVAL_PERIOD: 0
|
1259 |
+
EXPECTED_RESULTS: []
|
1260 |
+
KEYPOINT_OKS_SIGMAS: []
|
1261 |
+
PRECISE_BN:
|
1262 |
+
ENABLED: false
|
1263 |
+
NUM_ITER: 200
|
1264 |
+
VERSION: 2
|
1265 |
+
VIS_PERIOD: 0
|
1266 |
+
|
1267 |
+
[04/19 13:20:20] detectron2 INFO: Running with full config:
|
1268 |
+
CUDNN_BENCHMARK: False
|
1269 |
+
DATALOADER:
|
1270 |
+
ASPECT_RATIO_GROUPING: True
|
1271 |
+
FILTER_EMPTY_ANNOTATIONS: True
|
1272 |
+
NUM_WORKERS: 4
|
1273 |
+
REPEAT_THRESHOLD: 0.0
|
1274 |
+
SAMPLER_TRAIN: TrainingSampler
|
1275 |
+
DATASETS:
|
1276 |
+
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
|
1277 |
+
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
|
1278 |
+
PROPOSAL_FILES_TEST: ()
|
1279 |
+
PROPOSAL_FILES_TRAIN: ()
|
1280 |
+
TEST: ('modele-val',)
|
1281 |
+
TRAIN: ('modele-train',)
|
1282 |
+
GLOBAL:
|
1283 |
+
HACK: 1.0
|
1284 |
+
INPUT:
|
1285 |
+
CROP:
|
1286 |
+
ENABLED: False
|
1287 |
+
SIZE: [0.9, 0.9]
|
1288 |
+
TYPE: relative_range
|
1289 |
+
FORMAT: BGR
|
1290 |
+
MASK_FORMAT: polygon
|
1291 |
+
MAX_SIZE_TEST: 1333
|
1292 |
+
MAX_SIZE_TRAIN: 1333
|
1293 |
+
MIN_SIZE_TEST: 800
|
1294 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
1295 |
+
MIN_SIZE_TRAIN_SAMPLING: choice
|
1296 |
+
RANDOM_FLIP: horizontal
|
1297 |
+
MODEL:
|
1298 |
+
ANCHOR_GENERATOR:
|
1299 |
+
ANGLES: [[-90, 0, 90]]
|
1300 |
+
ASPECT_RATIOS: [[0.5, 1.0, 2.0]]
|
1301 |
+
NAME: DefaultAnchorGenerator
|
1302 |
+
OFFSET: 0.0
|
1303 |
+
SIZES: [[32], [64], [128], [256], [512]]
|
1304 |
+
BACKBONE:
|
1305 |
+
FREEZE_AT: 2
|
1306 |
+
NAME: build_resnet_fpn_backbone
|
1307 |
+
DEVICE: cuda
|
1308 |
+
FPN:
|
1309 |
+
FUSE_TYPE: sum
|
1310 |
+
IN_FEATURES: ['res2', 'res3', 'res4', 'res5']
|
1311 |
+
NORM:
|
1312 |
+
OUT_CHANNELS: 256
|
1313 |
+
KEYPOINT_ON: False
|
1314 |
+
LOAD_PROPOSALS: False
|
1315 |
+
MASK_ON: True
|
1316 |
+
META_ARCHITECTURE: GeneralizedRCNN
|
1317 |
+
PANOPTIC_FPN:
|
1318 |
+
COMBINE:
|
1319 |
+
ENABLED: True
|
1320 |
+
INSTANCES_CONFIDENCE_THRESH: 0.5
|
1321 |
+
OVERLAP_THRESH: 0.5
|
1322 |
+
STUFF_AREA_LIMIT: 4096
|
1323 |
+
INSTANCE_LOSS_WEIGHT: 1.0
|
1324 |
+
PIXEL_MEAN: [103.53, 116.28, 123.675]
|
1325 |
+
PIXEL_STD: [1.0, 1.0, 1.0]
|
1326 |
+
PROPOSAL_GENERATOR:
|
1327 |
+
MIN_SIZE: 0
|
1328 |
+
NAME: RPN
|
1329 |
+
RESNETS:
|
1330 |
+
DEFORM_MODULATED: False
|
1331 |
+
DEFORM_NUM_GROUPS: 1
|
1332 |
+
DEFORM_ON_PER_STAGE: [False, False, False, False]
|
1333 |
+
DEPTH: 50
|
1334 |
+
NORM: FrozenBN
|
1335 |
+
NUM_GROUPS: 1
|
1336 |
+
OUT_FEATURES: ['res2', 'res3', 'res4', 'res5']
|
1337 |
+
RES2_OUT_CHANNELS: 256
|
1338 |
+
RES5_DILATION: 1
|
1339 |
+
STEM_OUT_CHANNELS: 64
|
1340 |
+
STRIDE_IN_1X1: True
|
1341 |
+
WIDTH_PER_GROUP: 64
|
1342 |
+
RETINANET:
|
1343 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
1344 |
+
BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0)
|
1345 |
+
FOCAL_LOSS_ALPHA: 0.25
|
1346 |
+
FOCAL_LOSS_GAMMA: 2.0
|
1347 |
+
IN_FEATURES: ['p3', 'p4', 'p5', 'p6', 'p7']
|
1348 |
+
IOU_LABELS: [0, -1, 1]
|
1349 |
+
IOU_THRESHOLDS: [0.4, 0.5]
|
1350 |
+
NMS_THRESH_TEST: 0.5
|
1351 |
+
NORM:
|
1352 |
+
NUM_CLASSES: 80
|
1353 |
+
NUM_CONVS: 4
|
1354 |
+
PRIOR_PROB: 0.01
|
1355 |
+
SCORE_THRESH_TEST: 0.05
|
1356 |
+
SMOOTH_L1_LOSS_BETA: 0.1
|
1357 |
+
TOPK_CANDIDATES_TEST: 1000
|
1358 |
+
ROI_BOX_CASCADE_HEAD:
|
1359 |
+
BBOX_REG_WEIGHTS: ([10.0, 10.0, 5.0, 5.0], [20.0, 20.0, 10.0, 10.0], [30.0, 30.0, 15.0, 15.0])
|
1360 |
+
IOUS: (0.5, 0.6, 0.7)
|
1361 |
+
ROI_BOX_HEAD:
|
1362 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
1363 |
+
BBOX_REG_LOSS_WEIGHT: 1.0
|
1364 |
+
BBOX_REG_WEIGHTS: (10.0, 10.0, 5.0, 5.0)
|
1365 |
+
CLS_AGNOSTIC_BBOX_REG: False
|
1366 |
+
CONV_DIM: 256
|
1367 |
+
FC_DIM: 1024
|
1368 |
+
NAME: FastRCNNConvFCHead
|
1369 |
+
NORM:
|
1370 |
+
NUM_CONV: 0
|
1371 |
+
NUM_FC: 2
|
1372 |
+
POOLER_RESOLUTION: 7
|
1373 |
+
POOLER_SAMPLING_RATIO: 0
|
1374 |
+
POOLER_TYPE: ROIAlignV2
|
1375 |
+
SMOOTH_L1_BETA: 0.0
|
1376 |
+
TRAIN_ON_PRED_BOXES: False
|
1377 |
+
ROI_HEADS:
|
1378 |
+
BATCH_SIZE_PER_IMAGE: 512
|
1379 |
+
IN_FEATURES: ['p2', 'p3', 'p4', 'p5']
|
1380 |
+
IOU_LABELS: [0, 1]
|
1381 |
+
IOU_THRESHOLDS: [0.5]
|
1382 |
+
NAME: StandardROIHeads
|
1383 |
+
NMS_THRESH_TEST: 0.5
|
1384 |
+
NUM_CLASSES: 2
|
1385 |
+
POSITIVE_FRACTION: 0.25
|
1386 |
+
PROPOSAL_APPEND_GT: True
|
1387 |
+
SCORE_THRESH_TEST: 0.05
|
1388 |
+
ROI_KEYPOINT_HEAD:
|
1389 |
+
CONV_DIMS: (512, 512, 512, 512, 512, 512, 512, 512)
|
1390 |
+
LOSS_WEIGHT: 1.0
|
1391 |
+
MIN_KEYPOINTS_PER_IMAGE: 1
|
1392 |
+
NAME: KRCNNConvDeconvUpsampleHead
|
1393 |
+
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: True
|
1394 |
+
NUM_KEYPOINTS: 17
|
1395 |
+
POOLER_RESOLUTION: 14
|
1396 |
+
POOLER_SAMPLING_RATIO: 0
|
1397 |
+
POOLER_TYPE: ROIAlignV2
|
1398 |
+
ROI_MASK_HEAD:
|
1399 |
+
CLS_AGNOSTIC_MASK: False
|
1400 |
+
CONV_DIM: 256
|
1401 |
+
NAME: MaskRCNNConvUpsampleHead
|
1402 |
+
NORM:
|
1403 |
+
NUM_CONV: 4
|
1404 |
+
POOLER_RESOLUTION: 14
|
1405 |
+
POOLER_SAMPLING_RATIO: 0
|
1406 |
+
POOLER_TYPE: ROIAlignV2
|
1407 |
+
RPN:
|
1408 |
+
BATCH_SIZE_PER_IMAGE: 256
|
1409 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
1410 |
+
BBOX_REG_LOSS_WEIGHT: 1.0
|
1411 |
+
BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0)
|
1412 |
+
BOUNDARY_THRESH: -1
|
1413 |
+
HEAD_NAME: StandardRPNHead
|
1414 |
+
IN_FEATURES: ['p2', 'p3', 'p4', 'p5', 'p6']
|
1415 |
+
IOU_LABELS: [0, -1, 1]
|
1416 |
+
IOU_THRESHOLDS: [0.3, 0.7]
|
1417 |
+
LOSS_WEIGHT: 1.0
|
1418 |
+
NMS_THRESH: 0.7
|
1419 |
+
POSITIVE_FRACTION: 0.5
|
1420 |
+
POST_NMS_TOPK_TEST: 1000
|
1421 |
+
POST_NMS_TOPK_TRAIN: 1000
|
1422 |
+
PRE_NMS_TOPK_TEST: 1000
|
1423 |
+
PRE_NMS_TOPK_TRAIN: 2000
|
1424 |
+
SMOOTH_L1_BETA: 0.0
|
1425 |
+
SEM_SEG_HEAD:
|
1426 |
+
COMMON_STRIDE: 4
|
1427 |
+
CONVS_DIM: 128
|
1428 |
+
IGNORE_VALUE: 255
|
1429 |
+
IN_FEATURES: ['p2', 'p3', 'p4', 'p5']
|
1430 |
+
LOSS_WEIGHT: 1.0
|
1431 |
+
NAME: SemSegFPNHead
|
1432 |
+
NORM: GN
|
1433 |
+
NUM_CLASSES: 54
|
1434 |
+
WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/modele_final.pth
|
1435 |
+
OUTPUT_DIR: /content/drive/MyDrive/layoutparser/modele
|
1436 |
+
SEED: -1
|
1437 |
+
SOLVER:
|
1438 |
+
AMP:
|
1439 |
+
ENABLED: False
|
1440 |
+
BASE_LR: 0.00025
|
1441 |
+
BIAS_LR_FACTOR: 1.0
|
1442 |
+
CHECKPOINT_PERIOD: 50
|
1443 |
+
CLIP_GRADIENTS:
|
1444 |
+
CLIP_TYPE: value
|
1445 |
+
CLIP_VALUE: 1.0
|
1446 |
+
ENABLED: False
|
1447 |
+
NORM_TYPE: 2.0
|
1448 |
+
GAMMA: 0.1
|
1449 |
+
IMS_PER_BATCH: 2
|
1450 |
+
LR_SCHEDULER_NAME: WarmupMultiStepLR
|
1451 |
+
MAX_ITER: 300
|
1452 |
+
MOMENTUM: 0.9
|
1453 |
+
NESTEROV: False
|
1454 |
+
REFERENCE_WORLD_SIZE: 0
|
1455 |
+
STEPS: (210000, 250000)
|
1456 |
+
WARMUP_FACTOR: 0.001
|
1457 |
+
WARMUP_ITERS: 1000
|
1458 |
+
WARMUP_METHOD: linear
|
1459 |
+
WEIGHT_DECAY: 0.0001
|
1460 |
+
WEIGHT_DECAY_BIAS: 0.0001
|
1461 |
+
WEIGHT_DECAY_NORM: 0.0
|
1462 |
+
TEST:
|
1463 |
+
AUG:
|
1464 |
+
ENABLED: False
|
1465 |
+
FLIP: True
|
1466 |
+
MAX_SIZE: 4000
|
1467 |
+
MIN_SIZES: (400, 500, 600, 700, 800, 900, 1000, 1100, 1200)
|
1468 |
+
DETECTIONS_PER_IMAGE: 100
|
1469 |
+
EVAL_PERIOD: 0
|
1470 |
+
EXPECTED_RESULTS: []
|
1471 |
+
KEYPOINT_OKS_SIGMAS: []
|
1472 |
+
PRECISE_BN:
|
1473 |
+
ENABLED: False
|
1474 |
+
NUM_ITER: 200
|
1475 |
+
VERSION: 2
|
1476 |
+
VIS_PERIOD: 0
|
1477 |
+
[04/19 13:20:20] detectron2 INFO: Full config saved to /content/drive/MyDrive/layoutparser/modele/config.yaml
|
1478 |
+
[04/19 13:20:20] d2.utils.env INFO: Using a generated random seed 20261058
|
1479 |
+
[04/19 13:20:22] d2.engine.defaults INFO: Model:
|
1480 |
+
GeneralizedRCNN(
|
1481 |
+
(backbone): FPN(
|
1482 |
+
(fpn_lateral2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
|
1483 |
+
(fpn_output2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1484 |
+
(fpn_lateral3): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
|
1485 |
+
(fpn_output3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1486 |
+
(fpn_lateral4): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
|
1487 |
+
(fpn_output4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1488 |
+
(fpn_lateral5): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
|
1489 |
+
(fpn_output5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1490 |
+
(top_block): LastLevelMaxPool()
|
1491 |
+
(bottom_up): ResNet(
|
1492 |
+
(stem): BasicStem(
|
1493 |
+
(conv1): Conv2d(
|
1494 |
+
3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False
|
1495 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
1496 |
+
)
|
1497 |
+
)
|
1498 |
+
(res2): Sequential(
|
1499 |
+
(0): BottleneckBlock(
|
1500 |
+
(shortcut): Conv2d(
|
1501 |
+
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1502 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
1503 |
+
)
|
1504 |
+
(conv1): Conv2d(
|
1505 |
+
64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1506 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
1507 |
+
)
|
1508 |
+
(conv2): Conv2d(
|
1509 |
+
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
1510 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
1511 |
+
)
|
1512 |
+
(conv3): Conv2d(
|
1513 |
+
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1514 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
1515 |
+
)
|
1516 |
+
)
|
1517 |
+
(1): BottleneckBlock(
|
1518 |
+
(conv1): Conv2d(
|
1519 |
+
256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1520 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
1521 |
+
)
|
1522 |
+
(conv2): Conv2d(
|
1523 |
+
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
1524 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
1525 |
+
)
|
1526 |
+
(conv3): Conv2d(
|
1527 |
+
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1528 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
1529 |
+
)
|
1530 |
+
)
|
1531 |
+
(2): BottleneckBlock(
|
1532 |
+
(conv1): Conv2d(
|
1533 |
+
256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1534 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
1535 |
+
)
|
1536 |
+
(conv2): Conv2d(
|
1537 |
+
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
1538 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
1539 |
+
)
|
1540 |
+
(conv3): Conv2d(
|
1541 |
+
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1542 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
1543 |
+
)
|
1544 |
+
)
|
1545 |
+
)
|
1546 |
+
(res3): Sequential(
|
1547 |
+
(0): BottleneckBlock(
|
1548 |
+
(shortcut): Conv2d(
|
1549 |
+
256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
|
1550 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
1551 |
+
)
|
1552 |
+
(conv1): Conv2d(
|
1553 |
+
256, 128, kernel_size=(1, 1), stride=(2, 2), bias=False
|
1554 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
1555 |
+
)
|
1556 |
+
(conv2): Conv2d(
|
1557 |
+
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
1558 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
1559 |
+
)
|
1560 |
+
(conv3): Conv2d(
|
1561 |
+
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1562 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
1563 |
+
)
|
1564 |
+
)
|
1565 |
+
(1): BottleneckBlock(
|
1566 |
+
(conv1): Conv2d(
|
1567 |
+
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1568 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
1569 |
+
)
|
1570 |
+
(conv2): Conv2d(
|
1571 |
+
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
1572 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
1573 |
+
)
|
1574 |
+
(conv3): Conv2d(
|
1575 |
+
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1576 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
1577 |
+
)
|
1578 |
+
)
|
1579 |
+
(2): BottleneckBlock(
|
1580 |
+
(conv1): Conv2d(
|
1581 |
+
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1582 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
1583 |
+
)
|
1584 |
+
(conv2): Conv2d(
|
1585 |
+
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
1586 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
1587 |
+
)
|
1588 |
+
(conv3): Conv2d(
|
1589 |
+
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1590 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
1591 |
+
)
|
1592 |
+
)
|
1593 |
+
(3): BottleneckBlock(
|
1594 |
+
(conv1): Conv2d(
|
1595 |
+
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1596 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
1597 |
+
)
|
1598 |
+
(conv2): Conv2d(
|
1599 |
+
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
1600 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
1601 |
+
)
|
1602 |
+
(conv3): Conv2d(
|
1603 |
+
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1604 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
1605 |
+
)
|
1606 |
+
)
|
1607 |
+
)
|
1608 |
+
(res4): Sequential(
|
1609 |
+
(0): BottleneckBlock(
|
1610 |
+
(shortcut): Conv2d(
|
1611 |
+
512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False
|
1612 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
1613 |
+
)
|
1614 |
+
(conv1): Conv2d(
|
1615 |
+
512, 256, kernel_size=(1, 1), stride=(2, 2), bias=False
|
1616 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
1617 |
+
)
|
1618 |
+
(conv2): Conv2d(
|
1619 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
1620 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
1621 |
+
)
|
1622 |
+
(conv3): Conv2d(
|
1623 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1624 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
1625 |
+
)
|
1626 |
+
)
|
1627 |
+
(1): BottleneckBlock(
|
1628 |
+
(conv1): Conv2d(
|
1629 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1630 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
1631 |
+
)
|
1632 |
+
(conv2): Conv2d(
|
1633 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
1634 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
1635 |
+
)
|
1636 |
+
(conv3): Conv2d(
|
1637 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1638 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
1639 |
+
)
|
1640 |
+
)
|
1641 |
+
(2): BottleneckBlock(
|
1642 |
+
(conv1): Conv2d(
|
1643 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1644 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
1645 |
+
)
|
1646 |
+
(conv2): Conv2d(
|
1647 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
1648 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
1649 |
+
)
|
1650 |
+
(conv3): Conv2d(
|
1651 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1652 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
1653 |
+
)
|
1654 |
+
)
|
1655 |
+
(3): BottleneckBlock(
|
1656 |
+
(conv1): Conv2d(
|
1657 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1658 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
1659 |
+
)
|
1660 |
+
(conv2): Conv2d(
|
1661 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
1662 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
1663 |
+
)
|
1664 |
+
(conv3): Conv2d(
|
1665 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1666 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
1667 |
+
)
|
1668 |
+
)
|
1669 |
+
(4): BottleneckBlock(
|
1670 |
+
(conv1): Conv2d(
|
1671 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1672 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
1673 |
+
)
|
1674 |
+
(conv2): Conv2d(
|
1675 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
1676 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
1677 |
+
)
|
1678 |
+
(conv3): Conv2d(
|
1679 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1680 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
1681 |
+
)
|
1682 |
+
)
|
1683 |
+
(5): BottleneckBlock(
|
1684 |
+
(conv1): Conv2d(
|
1685 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1686 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
1687 |
+
)
|
1688 |
+
(conv2): Conv2d(
|
1689 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
1690 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
1691 |
+
)
|
1692 |
+
(conv3): Conv2d(
|
1693 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1694 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
1695 |
+
)
|
1696 |
+
)
|
1697 |
+
)
|
1698 |
+
(res5): Sequential(
|
1699 |
+
(0): BottleneckBlock(
|
1700 |
+
(shortcut): Conv2d(
|
1701 |
+
1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False
|
1702 |
+
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
|
1703 |
+
)
|
1704 |
+
(conv1): Conv2d(
|
1705 |
+
1024, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
|
1706 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
1707 |
+
)
|
1708 |
+
(conv2): Conv2d(
|
1709 |
+
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
1710 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
1711 |
+
)
|
1712 |
+
(conv3): Conv2d(
|
1713 |
+
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1714 |
+
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
|
1715 |
+
)
|
1716 |
+
)
|
1717 |
+
(1): BottleneckBlock(
|
1718 |
+
(conv1): Conv2d(
|
1719 |
+
2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1720 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
1721 |
+
)
|
1722 |
+
(conv2): Conv2d(
|
1723 |
+
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
1724 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
1725 |
+
)
|
1726 |
+
(conv3): Conv2d(
|
1727 |
+
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1728 |
+
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
|
1729 |
+
)
|
1730 |
+
)
|
1731 |
+
(2): BottleneckBlock(
|
1732 |
+
(conv1): Conv2d(
|
1733 |
+
2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1734 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
1735 |
+
)
|
1736 |
+
(conv2): Conv2d(
|
1737 |
+
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
1738 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
1739 |
+
)
|
1740 |
+
(conv3): Conv2d(
|
1741 |
+
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
|
1742 |
+
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
|
1743 |
+
)
|
1744 |
+
)
|
1745 |
+
)
|
1746 |
+
)
|
1747 |
+
)
|
1748 |
+
(proposal_generator): RPN(
|
1749 |
+
(rpn_head): StandardRPNHead(
|
1750 |
+
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1751 |
+
(objectness_logits): Conv2d(256, 3, kernel_size=(1, 1), stride=(1, 1))
|
1752 |
+
(anchor_deltas): Conv2d(256, 12, kernel_size=(1, 1), stride=(1, 1))
|
1753 |
+
)
|
1754 |
+
(anchor_generator): DefaultAnchorGenerator(
|
1755 |
+
(cell_anchors): BufferList()
|
1756 |
+
)
|
1757 |
+
)
|
1758 |
+
(roi_heads): StandardROIHeads(
|
1759 |
+
(box_pooler): ROIPooler(
|
1760 |
+
(level_poolers): ModuleList(
|
1761 |
+
(0): ROIAlign(output_size=(7, 7), spatial_scale=0.25, sampling_ratio=0, aligned=True)
|
1762 |
+
(1): ROIAlign(output_size=(7, 7), spatial_scale=0.125, sampling_ratio=0, aligned=True)
|
1763 |
+
(2): ROIAlign(output_size=(7, 7), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
|
1764 |
+
(3): ROIAlign(output_size=(7, 7), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
|
1765 |
+
)
|
1766 |
+
)
|
1767 |
+
(box_head): FastRCNNConvFCHead(
|
1768 |
+
(flatten): Flatten(start_dim=1, end_dim=-1)
|
1769 |
+
(fc1): Linear(in_features=12544, out_features=1024, bias=True)
|
1770 |
+
(fc_relu1): ReLU()
|
1771 |
+
(fc2): Linear(in_features=1024, out_features=1024, bias=True)
|
1772 |
+
(fc_relu2): ReLU()
|
1773 |
+
)
|
1774 |
+
(box_predictor): FastRCNNOutputLayers(
|
1775 |
+
(cls_score): Linear(in_features=1024, out_features=3, bias=True)
|
1776 |
+
(bbox_pred): Linear(in_features=1024, out_features=8, bias=True)
|
1777 |
+
)
|
1778 |
+
(mask_pooler): ROIPooler(
|
1779 |
+
(level_poolers): ModuleList(
|
1780 |
+
(0): ROIAlign(output_size=(14, 14), spatial_scale=0.25, sampling_ratio=0, aligned=True)
|
1781 |
+
(1): ROIAlign(output_size=(14, 14), spatial_scale=0.125, sampling_ratio=0, aligned=True)
|
1782 |
+
(2): ROIAlign(output_size=(14, 14), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
|
1783 |
+
(3): ROIAlign(output_size=(14, 14), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
|
1784 |
+
)
|
1785 |
+
)
|
1786 |
+
(mask_head): MaskRCNNConvUpsampleHead(
|
1787 |
+
(mask_fcn1): Conv2d(
|
1788 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
1789 |
+
(activation): ReLU()
|
1790 |
+
)
|
1791 |
+
(mask_fcn2): Conv2d(
|
1792 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
1793 |
+
(activation): ReLU()
|
1794 |
+
)
|
1795 |
+
(mask_fcn3): Conv2d(
|
1796 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
1797 |
+
(activation): ReLU()
|
1798 |
+
)
|
1799 |
+
(mask_fcn4): Conv2d(
|
1800 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
1801 |
+
(activation): ReLU()
|
1802 |
+
)
|
1803 |
+
(deconv): ConvTranspose2d(256, 256, kernel_size=(2, 2), stride=(2, 2))
|
1804 |
+
(deconv_relu): ReLU()
|
1805 |
+
(predictor): Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1))
|
1806 |
+
)
|
1807 |
+
)
|
1808 |
+
)
|
1809 |
+
[04/19 13:20:22] d2.data.dataset_mapper INFO: [DatasetMapper] Augmentations used in training: [ResizeShortestEdge(short_edge_length=(640, 672, 704, 736, 768, 800), max_size=1333, sample_style='choice'), RandomFlip(), RandomRotation(angle=[-90.0, 0.0])]
|
1810 |
+
[04/19 13:20:22] d2.data.datasets.coco INFO: Loaded 36 images in COCO format from /content/drive/MyDrive/layoutparser/dataset6/train/via_project_19Apr2023_15h0m_coco.json
|
1811 |
+
[04/19 13:20:22] d2.data.build INFO: Removed 6 images with no usable annotations. 30 images left.
|
1812 |
+
[04/19 13:20:22] d2.data.build INFO: Distribution of instances among all 2 categories:
|
1813 |
+
[36m| category | #instances | category | #instances |
|
1814 |
+
|:----------:|:-------------|:----------:|:-------------|
|
1815 |
+
| | 89 | | 0 |
|
1816 |
+
| | | | |
|
1817 |
+
| total | 89 | | |[0m
|
1818 |
+
[04/19 13:20:22] d2.data.build INFO: Using training sampler TrainingSampler
|
1819 |
+
[04/19 13:20:22] d2.data.common INFO: Serializing 30 elements to byte tensors and concatenating them all ...
|
1820 |
+
[04/19 13:20:22] d2.data.common INFO: Serialized dataset takes 0.01 MiB
|
1821 |
+
[04/19 13:20:22] d2.solver.build WARNING: SOLVER.STEPS contains values larger than SOLVER.MAX_ITER. These values will be ignored.
|
1822 |
+
[04/19 13:20:24] fvcore.common.checkpoint INFO: Loading checkpoint from /content/drive/MyDrive/layoutparser/modele/modele3_NP?/modele_final.pth
|
1823 |
+
[04/19 13:21:19] detectron2 INFO: Rank of current process: 0. World size: 1
|
1824 |
+
[04/19 13:21:20] detectron2 INFO: Environment info:
|
1825 |
+
---------------------- ----------------------------------------------------------------
|
1826 |
+
sys.platform linux
|
1827 |
+
Python 3.9.16 (main, Dec 7 2022, 01:11:51) [GCC 9.4.0]
|
1828 |
+
numpy 1.22.4
|
1829 |
+
detectron2 0.4 @/usr/local/lib/python3.9/dist-packages/detectron2
|
1830 |
+
Compiler GCC 9.4
|
1831 |
+
CUDA compiler CUDA 11.8
|
1832 |
+
detectron2 arch flags 7.5
|
1833 |
+
DETECTRON2_ENV_MODULE <not set>
|
1834 |
+
PyTorch 2.0.0+cu118 @/usr/local/lib/python3.9/dist-packages/torch
|
1835 |
+
PyTorch debug build False
|
1836 |
+
GPU available True
|
1837 |
+
GPU 0 Tesla T4 (arch=7.5)
|
1838 |
+
CUDA_HOME /usr/local/cuda
|
1839 |
+
Pillow 9.5.0
|
1840 |
+
torchvision 0.15.1+cu118 @/usr/local/lib/python3.9/dist-packages/torchvision
|
1841 |
+
torchvision arch flags 3.5, 5.0, 6.0, 7.0, 7.5, 8.0, 8.6
|
1842 |
+
fvcore 0.1.3.post20210317
|
1843 |
+
cv2 4.7.0
|
1844 |
+
---------------------- ----------------------------------------------------------------
|
1845 |
+
PyTorch built with:
|
1846 |
+
- GCC 9.3
|
1847 |
+
- C++ Version: 201703
|
1848 |
+
- Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
|
1849 |
+
- Intel(R) MKL-DNN v2.7.3 (Git Hash 6dbeffbae1f23cbbeae17adb7b5b13f1f37c080e)
|
1850 |
+
- OpenMP 201511 (a.k.a. OpenMP 4.5)
|
1851 |
+
- LAPACK is enabled (usually provided by MKL)
|
1852 |
+
- NNPACK is enabled
|
1853 |
+
- CPU capability usage: AVX2
|
1854 |
+
- CUDA Runtime 11.8
|
1855 |
+
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
|
1856 |
+
- CuDNN 8.7
|
1857 |
+
- Magma 2.6.1
|
1858 |
+
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.0.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
|
1859 |
+
|
1860 |
+
[04/19 13:21:20] detectron2 INFO: Command line arguments: Namespace(config_file='/content/layout-model-training/config_LayoutParser_PrimaDataset.yaml', resume=False, eval_only=False, num_gpus=1, num_machines=1, machine_rank=0, dist_url='tcp://127.0.0.1:49152', opts=['OUTPUT_DIR', '/content/drive/MyDrive/layoutparser/modele', 'SOLVER.IMS_PER_BATCH', '2'], dataset_name='modele', json_annotation_train='/content/drive/MyDrive/layoutparser/dataset6/train/via_project_19Apr2023_15h0m_coco.json', image_path_train='/content/drive/MyDrive/layoutparser/dataset6/train', json_annotation_val='/content/drive/MyDrive/layoutparser/dataset6/val/via_project_19Apr2023_15h9m_coco.json', image_path_val='/content/drive/MyDrive/layoutparser/dataset6/val')
|
1861 |
+
[04/19 13:21:20] detectron2 INFO: Contents of args.config_file=/content/layout-model-training/config_LayoutParser_PrimaDataset.yaml:
|
1862 |
+
CUDNN_BENCHMARK: false
|
1863 |
+
DATALOADER:
|
1864 |
+
ASPECT_RATIO_GROUPING: true
|
1865 |
+
FILTER_EMPTY_ANNOTATIONS: true
|
1866 |
+
NUM_WORKERS: 4
|
1867 |
+
REPEAT_THRESHOLD: 0.0
|
1868 |
+
SAMPLER_TRAIN: TrainingSampler
|
1869 |
+
DATASETS:
|
1870 |
+
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
|
1871 |
+
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
|
1872 |
+
PROPOSAL_FILES_TEST: []
|
1873 |
+
PROPOSAL_FILES_TRAIN: []
|
1874 |
+
TEST:
|
1875 |
+
- prima-layout-val
|
1876 |
+
TRAIN:
|
1877 |
+
- prima-layout-train
|
1878 |
+
GLOBAL:
|
1879 |
+
HACK: 1.0
|
1880 |
+
INPUT:
|
1881 |
+
CROP:
|
1882 |
+
ENABLED: false
|
1883 |
+
SIZE:
|
1884 |
+
- 0.9
|
1885 |
+
- 0.9
|
1886 |
+
TYPE: relative_range
|
1887 |
+
FORMAT: BGR
|
1888 |
+
MASK_FORMAT: polygon
|
1889 |
+
MAX_SIZE_TEST: 1333
|
1890 |
+
MAX_SIZE_TRAIN: 1333
|
1891 |
+
MIN_SIZE_TEST: 800
|
1892 |
+
MIN_SIZE_TRAIN:
|
1893 |
+
- 640
|
1894 |
+
- 672
|
1895 |
+
- 704
|
1896 |
+
- 736
|
1897 |
+
- 768
|
1898 |
+
- 800
|
1899 |
+
MIN_SIZE_TRAIN_SAMPLING: choice
|
1900 |
+
MODEL:
|
1901 |
+
ANCHOR_GENERATOR:
|
1902 |
+
ANGLES:
|
1903 |
+
- - -90
|
1904 |
+
- 0
|
1905 |
+
- 90
|
1906 |
+
ASPECT_RATIOS:
|
1907 |
+
- - 0.5
|
1908 |
+
- 1.0
|
1909 |
+
- 2.0
|
1910 |
+
NAME: DefaultAnchorGenerator
|
1911 |
+
OFFSET: 0.0
|
1912 |
+
SIZES:
|
1913 |
+
- - 32
|
1914 |
+
- - 64
|
1915 |
+
- - 128
|
1916 |
+
- - 256
|
1917 |
+
- - 512
|
1918 |
+
BACKBONE:
|
1919 |
+
FREEZE_AT: 2
|
1920 |
+
NAME: build_resnet_fpn_backbone
|
1921 |
+
DEVICE: cuda
|
1922 |
+
FPN:
|
1923 |
+
FUSE_TYPE: sum
|
1924 |
+
IN_FEATURES:
|
1925 |
+
- res2
|
1926 |
+
- res3
|
1927 |
+
- res4
|
1928 |
+
- res5
|
1929 |
+
NORM: ''
|
1930 |
+
OUT_CHANNELS: 256
|
1931 |
+
KEYPOINT_ON: false
|
1932 |
+
LOAD_PROPOSALS: false
|
1933 |
+
MASK_ON: true
|
1934 |
+
META_ARCHITECTURE: GeneralizedRCNN
|
1935 |
+
PANOPTIC_FPN:
|
1936 |
+
COMBINE:
|
1937 |
+
ENABLED: true
|
1938 |
+
INSTANCES_CONFIDENCE_THRESH: 0.5
|
1939 |
+
OVERLAP_THRESH: 0.5
|
1940 |
+
STUFF_AREA_LIMIT: 4096
|
1941 |
+
INSTANCE_LOSS_WEIGHT: 1.0
|
1942 |
+
PIXEL_MEAN:
|
1943 |
+
- 103.53
|
1944 |
+
- 116.28
|
1945 |
+
- 123.675
|
1946 |
+
PIXEL_STD:
|
1947 |
+
- 1.0
|
1948 |
+
- 1.0
|
1949 |
+
- 1.0
|
1950 |
+
PROPOSAL_GENERATOR:
|
1951 |
+
MIN_SIZE: 0
|
1952 |
+
NAME: RPN
|
1953 |
+
RESNETS:
|
1954 |
+
DEFORM_MODULATED: false
|
1955 |
+
DEFORM_NUM_GROUPS: 1
|
1956 |
+
DEFORM_ON_PER_STAGE:
|
1957 |
+
- false
|
1958 |
+
- false
|
1959 |
+
- false
|
1960 |
+
- false
|
1961 |
+
DEPTH: 50
|
1962 |
+
NORM: FrozenBN
|
1963 |
+
NUM_GROUPS: 1
|
1964 |
+
OUT_FEATURES:
|
1965 |
+
- res2
|
1966 |
+
- res3
|
1967 |
+
- res4
|
1968 |
+
- res5
|
1969 |
+
RES2_OUT_CHANNELS: 256
|
1970 |
+
RES5_DILATION: 1
|
1971 |
+
STEM_OUT_CHANNELS: 64
|
1972 |
+
STRIDE_IN_1X1: true
|
1973 |
+
WIDTH_PER_GROUP: 64
|
1974 |
+
RETINANET:
|
1975 |
+
BBOX_REG_WEIGHTS:
|
1976 |
+
- 1.0
|
1977 |
+
- 1.0
|
1978 |
+
- 1.0
|
1979 |
+
- 1.0
|
1980 |
+
FOCAL_LOSS_ALPHA: 0.25
|
1981 |
+
FOCAL_LOSS_GAMMA: 2.0
|
1982 |
+
IN_FEATURES:
|
1983 |
+
- p3
|
1984 |
+
- p4
|
1985 |
+
- p5
|
1986 |
+
- p6
|
1987 |
+
- p7
|
1988 |
+
IOU_LABELS:
|
1989 |
+
- 0
|
1990 |
+
- -1
|
1991 |
+
- 1
|
1992 |
+
IOU_THRESHOLDS:
|
1993 |
+
- 0.4
|
1994 |
+
- 0.5
|
1995 |
+
NMS_THRESH_TEST: 0.5
|
1996 |
+
NUM_CLASSES: 80
|
1997 |
+
NUM_CONVS: 4
|
1998 |
+
PRIOR_PROB: 0.01
|
1999 |
+
SCORE_THRESH_TEST: 0.05
|
2000 |
+
SMOOTH_L1_LOSS_BETA: 0.1
|
2001 |
+
TOPK_CANDIDATES_TEST: 1000
|
2002 |
+
ROI_BOX_CASCADE_HEAD:
|
2003 |
+
BBOX_REG_WEIGHTS:
|
2004 |
+
- - 10.0
|
2005 |
+
- 10.0
|
2006 |
+
- 5.0
|
2007 |
+
- 5.0
|
2008 |
+
- - 20.0
|
2009 |
+
- 20.0
|
2010 |
+
- 10.0
|
2011 |
+
- 10.0
|
2012 |
+
- - 30.0
|
2013 |
+
- 30.0
|
2014 |
+
- 15.0
|
2015 |
+
- 15.0
|
2016 |
+
IOUS:
|
2017 |
+
- 0.5
|
2018 |
+
- 0.6
|
2019 |
+
- 0.7
|
2020 |
+
ROI_BOX_HEAD:
|
2021 |
+
BBOX_REG_WEIGHTS:
|
2022 |
+
- 10.0
|
2023 |
+
- 10.0
|
2024 |
+
- 5.0
|
2025 |
+
- 5.0
|
2026 |
+
CLS_AGNOSTIC_BBOX_REG: false
|
2027 |
+
CONV_DIM: 256
|
2028 |
+
FC_DIM: 1024
|
2029 |
+
NAME: FastRCNNConvFCHead
|
2030 |
+
NORM: ''
|
2031 |
+
NUM_CONV: 0
|
2032 |
+
NUM_FC: 2
|
2033 |
+
POOLER_RESOLUTION: 7
|
2034 |
+
POOLER_SAMPLING_RATIO: 0
|
2035 |
+
POOLER_TYPE: ROIAlignV2
|
2036 |
+
SMOOTH_L1_BETA: 0.0
|
2037 |
+
TRAIN_ON_PRED_BOXES: false
|
2038 |
+
ROI_HEADS:
|
2039 |
+
BATCH_SIZE_PER_IMAGE: 512
|
2040 |
+
IN_FEATURES:
|
2041 |
+
- p2
|
2042 |
+
- p3
|
2043 |
+
- p4
|
2044 |
+
- p5
|
2045 |
+
IOU_LABELS:
|
2046 |
+
- 0
|
2047 |
+
- 1
|
2048 |
+
IOU_THRESHOLDS:
|
2049 |
+
- 0.5
|
2050 |
+
NAME: StandardROIHeads
|
2051 |
+
NMS_THRESH_TEST: 0.5
|
2052 |
+
NUM_CLASSES: 7
|
2053 |
+
POSITIVE_FRACTION: 0.25
|
2054 |
+
PROPOSAL_APPEND_GT: true
|
2055 |
+
SCORE_THRESH_TEST: 0.05
|
2056 |
+
ROI_KEYPOINT_HEAD:
|
2057 |
+
CONV_DIMS:
|
2058 |
+
- 512
|
2059 |
+
- 512
|
2060 |
+
- 512
|
2061 |
+
- 512
|
2062 |
+
- 512
|
2063 |
+
- 512
|
2064 |
+
- 512
|
2065 |
+
- 512
|
2066 |
+
LOSS_WEIGHT: 1.0
|
2067 |
+
MIN_KEYPOINTS_PER_IMAGE: 1
|
2068 |
+
NAME: KRCNNConvDeconvUpsampleHead
|
2069 |
+
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true
|
2070 |
+
NUM_KEYPOINTS: 17
|
2071 |
+
POOLER_RESOLUTION: 14
|
2072 |
+
POOLER_SAMPLING_RATIO: 0
|
2073 |
+
POOLER_TYPE: ROIAlignV2
|
2074 |
+
ROI_MASK_HEAD:
|
2075 |
+
CLS_AGNOSTIC_MASK: false
|
2076 |
+
CONV_DIM: 256
|
2077 |
+
NAME: MaskRCNNConvUpsampleHead
|
2078 |
+
NORM: ''
|
2079 |
+
NUM_CONV: 4
|
2080 |
+
POOLER_RESOLUTION: 14
|
2081 |
+
POOLER_SAMPLING_RATIO: 0
|
2082 |
+
POOLER_TYPE: ROIAlignV2
|
2083 |
+
RPN:
|
2084 |
+
BATCH_SIZE_PER_IMAGE: 256
|
2085 |
+
BBOX_REG_WEIGHTS:
|
2086 |
+
- 1.0
|
2087 |
+
- 1.0
|
2088 |
+
- 1.0
|
2089 |
+
- 1.0
|
2090 |
+
BOUNDARY_THRESH: -1
|
2091 |
+
HEAD_NAME: StandardRPNHead
|
2092 |
+
IN_FEATURES:
|
2093 |
+
- p2
|
2094 |
+
- p3
|
2095 |
+
- p4
|
2096 |
+
- p5
|
2097 |
+
- p6
|
2098 |
+
IOU_LABELS:
|
2099 |
+
- 0
|
2100 |
+
- -1
|
2101 |
+
- 1
|
2102 |
+
IOU_THRESHOLDS:
|
2103 |
+
- 0.3
|
2104 |
+
- 0.7
|
2105 |
+
LOSS_WEIGHT: 1.0
|
2106 |
+
NMS_THRESH: 0.7
|
2107 |
+
POSITIVE_FRACTION: 0.5
|
2108 |
+
POST_NMS_TOPK_TEST: 1000
|
2109 |
+
POST_NMS_TOPK_TRAIN: 1000
|
2110 |
+
PRE_NMS_TOPK_TEST: 1000
|
2111 |
+
PRE_NMS_TOPK_TRAIN: 2000
|
2112 |
+
SMOOTH_L1_BETA: 0.0
|
2113 |
+
SEM_SEG_HEAD:
|
2114 |
+
COMMON_STRIDE: 4
|
2115 |
+
CONVS_DIM: 128
|
2116 |
+
IGNORE_VALUE: 255
|
2117 |
+
IN_FEATURES:
|
2118 |
+
- p2
|
2119 |
+
- p3
|
2120 |
+
- p4
|
2121 |
+
- p5
|
2122 |
+
LOSS_WEIGHT: 1.0
|
2123 |
+
NAME: SemSegFPNHead
|
2124 |
+
NORM: GN
|
2125 |
+
NUM_CLASSES: 54
|
2126 |
+
WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/model_final.pth
|
2127 |
+
OUTPUT_DIR: ../outputs/prima/mask_rcnn_R_50_FPN_3x/
|
2128 |
+
SEED: -1
|
2129 |
+
SOLVER:
|
2130 |
+
BASE_LR: 0.00025
|
2131 |
+
BIAS_LR_FACTOR: 1.0
|
2132 |
+
CHECKPOINT_PERIOD: 50
|
2133 |
+
CLIP_GRADIENTS:
|
2134 |
+
CLIP_TYPE: value
|
2135 |
+
CLIP_VALUE: 1.0
|
2136 |
+
ENABLED: false
|
2137 |
+
NORM_TYPE: 2.0
|
2138 |
+
GAMMA: 0.1
|
2139 |
+
IMS_PER_BATCH: 2
|
2140 |
+
LR_SCHEDULER_NAME: WarmupMultiStepLR
|
2141 |
+
MAX_ITER: 300
|
2142 |
+
MOMENTUM: 0.9
|
2143 |
+
NESTEROV: false
|
2144 |
+
STEPS:
|
2145 |
+
- 210000
|
2146 |
+
- 250000
|
2147 |
+
WARMUP_FACTOR: 0.001
|
2148 |
+
WARMUP_ITERS: 1000
|
2149 |
+
WARMUP_METHOD: linear
|
2150 |
+
WEIGHT_DECAY: 0.0001
|
2151 |
+
WEIGHT_DECAY_BIAS: 0.0001
|
2152 |
+
WEIGHT_DECAY_NORM: 0.0
|
2153 |
+
TEST:
|
2154 |
+
AUG:
|
2155 |
+
ENABLED: false
|
2156 |
+
FLIP: true
|
2157 |
+
MAX_SIZE: 4000
|
2158 |
+
MIN_SIZES:
|
2159 |
+
- 400
|
2160 |
+
- 500
|
2161 |
+
- 600
|
2162 |
+
- 700
|
2163 |
+
- 800
|
2164 |
+
- 900
|
2165 |
+
- 1000
|
2166 |
+
- 1100
|
2167 |
+
- 1200
|
2168 |
+
DETECTIONS_PER_IMAGE: 100
|
2169 |
+
EVAL_PERIOD: 0
|
2170 |
+
EXPECTED_RESULTS: []
|
2171 |
+
KEYPOINT_OKS_SIGMAS: []
|
2172 |
+
PRECISE_BN:
|
2173 |
+
ENABLED: false
|
2174 |
+
NUM_ITER: 200
|
2175 |
+
VERSION: 2
|
2176 |
+
VIS_PERIOD: 0
|
2177 |
+
|
2178 |
+
[04/19 13:21:20] detectron2 INFO: Running with full config:
|
2179 |
+
CUDNN_BENCHMARK: False
|
2180 |
+
DATALOADER:
|
2181 |
+
ASPECT_RATIO_GROUPING: True
|
2182 |
+
FILTER_EMPTY_ANNOTATIONS: True
|
2183 |
+
NUM_WORKERS: 4
|
2184 |
+
REPEAT_THRESHOLD: 0.0
|
2185 |
+
SAMPLER_TRAIN: TrainingSampler
|
2186 |
+
DATASETS:
|
2187 |
+
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
|
2188 |
+
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
|
2189 |
+
PROPOSAL_FILES_TEST: ()
|
2190 |
+
PROPOSAL_FILES_TRAIN: ()
|
2191 |
+
TEST: ('modele-val',)
|
2192 |
+
TRAIN: ('modele-train',)
|
2193 |
+
GLOBAL:
|
2194 |
+
HACK: 1.0
|
2195 |
+
INPUT:
|
2196 |
+
CROP:
|
2197 |
+
ENABLED: False
|
2198 |
+
SIZE: [0.9, 0.9]
|
2199 |
+
TYPE: relative_range
|
2200 |
+
FORMAT: BGR
|
2201 |
+
MASK_FORMAT: polygon
|
2202 |
+
MAX_SIZE_TEST: 1333
|
2203 |
+
MAX_SIZE_TRAIN: 1333
|
2204 |
+
MIN_SIZE_TEST: 800
|
2205 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
2206 |
+
MIN_SIZE_TRAIN_SAMPLING: choice
|
2207 |
+
RANDOM_FLIP: horizontal
|
2208 |
+
MODEL:
|
2209 |
+
ANCHOR_GENERATOR:
|
2210 |
+
ANGLES: [[-90, 0, 90]]
|
2211 |
+
ASPECT_RATIOS: [[0.5, 1.0, 2.0]]
|
2212 |
+
NAME: DefaultAnchorGenerator
|
2213 |
+
OFFSET: 0.0
|
2214 |
+
SIZES: [[32], [64], [128], [256], [512]]
|
2215 |
+
BACKBONE:
|
2216 |
+
FREEZE_AT: 2
|
2217 |
+
NAME: build_resnet_fpn_backbone
|
2218 |
+
DEVICE: cuda
|
2219 |
+
FPN:
|
2220 |
+
FUSE_TYPE: sum
|
2221 |
+
IN_FEATURES: ['res2', 'res3', 'res4', 'res5']
|
2222 |
+
NORM:
|
2223 |
+
OUT_CHANNELS: 256
|
2224 |
+
KEYPOINT_ON: False
|
2225 |
+
LOAD_PROPOSALS: False
|
2226 |
+
MASK_ON: True
|
2227 |
+
META_ARCHITECTURE: GeneralizedRCNN
|
2228 |
+
PANOPTIC_FPN:
|
2229 |
+
COMBINE:
|
2230 |
+
ENABLED: True
|
2231 |
+
INSTANCES_CONFIDENCE_THRESH: 0.5
|
2232 |
+
OVERLAP_THRESH: 0.5
|
2233 |
+
STUFF_AREA_LIMIT: 4096
|
2234 |
+
INSTANCE_LOSS_WEIGHT: 1.0
|
2235 |
+
PIXEL_MEAN: [103.53, 116.28, 123.675]
|
2236 |
+
PIXEL_STD: [1.0, 1.0, 1.0]
|
2237 |
+
PROPOSAL_GENERATOR:
|
2238 |
+
MIN_SIZE: 0
|
2239 |
+
NAME: RPN
|
2240 |
+
RESNETS:
|
2241 |
+
DEFORM_MODULATED: False
|
2242 |
+
DEFORM_NUM_GROUPS: 1
|
2243 |
+
DEFORM_ON_PER_STAGE: [False, False, False, False]
|
2244 |
+
DEPTH: 50
|
2245 |
+
NORM: FrozenBN
|
2246 |
+
NUM_GROUPS: 1
|
2247 |
+
OUT_FEATURES: ['res2', 'res3', 'res4', 'res5']
|
2248 |
+
RES2_OUT_CHANNELS: 256
|
2249 |
+
RES5_DILATION: 1
|
2250 |
+
STEM_OUT_CHANNELS: 64
|
2251 |
+
STRIDE_IN_1X1: True
|
2252 |
+
WIDTH_PER_GROUP: 64
|
2253 |
+
RETINANET:
|
2254 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
2255 |
+
BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0)
|
2256 |
+
FOCAL_LOSS_ALPHA: 0.25
|
2257 |
+
FOCAL_LOSS_GAMMA: 2.0
|
2258 |
+
IN_FEATURES: ['p3', 'p4', 'p5', 'p6', 'p7']
|
2259 |
+
IOU_LABELS: [0, -1, 1]
|
2260 |
+
IOU_THRESHOLDS: [0.4, 0.5]
|
2261 |
+
NMS_THRESH_TEST: 0.5
|
2262 |
+
NORM:
|
2263 |
+
NUM_CLASSES: 80
|
2264 |
+
NUM_CONVS: 4
|
2265 |
+
PRIOR_PROB: 0.01
|
2266 |
+
SCORE_THRESH_TEST: 0.05
|
2267 |
+
SMOOTH_L1_LOSS_BETA: 0.1
|
2268 |
+
TOPK_CANDIDATES_TEST: 1000
|
2269 |
+
ROI_BOX_CASCADE_HEAD:
|
2270 |
+
BBOX_REG_WEIGHTS: ([10.0, 10.0, 5.0, 5.0], [20.0, 20.0, 10.0, 10.0], [30.0, 30.0, 15.0, 15.0])
|
2271 |
+
IOUS: (0.5, 0.6, 0.7)
|
2272 |
+
ROI_BOX_HEAD:
|
2273 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
2274 |
+
BBOX_REG_LOSS_WEIGHT: 1.0
|
2275 |
+
BBOX_REG_WEIGHTS: (10.0, 10.0, 5.0, 5.0)
|
2276 |
+
CLS_AGNOSTIC_BBOX_REG: False
|
2277 |
+
CONV_DIM: 256
|
2278 |
+
FC_DIM: 1024
|
2279 |
+
NAME: FastRCNNConvFCHead
|
2280 |
+
NORM:
|
2281 |
+
NUM_CONV: 0
|
2282 |
+
NUM_FC: 2
|
2283 |
+
POOLER_RESOLUTION: 7
|
2284 |
+
POOLER_SAMPLING_RATIO: 0
|
2285 |
+
POOLER_TYPE: ROIAlignV2
|
2286 |
+
SMOOTH_L1_BETA: 0.0
|
2287 |
+
TRAIN_ON_PRED_BOXES: False
|
2288 |
+
ROI_HEADS:
|
2289 |
+
BATCH_SIZE_PER_IMAGE: 512
|
2290 |
+
IN_FEATURES: ['p2', 'p3', 'p4', 'p5']
|
2291 |
+
IOU_LABELS: [0, 1]
|
2292 |
+
IOU_THRESHOLDS: [0.5]
|
2293 |
+
NAME: StandardROIHeads
|
2294 |
+
NMS_THRESH_TEST: 0.5
|
2295 |
+
NUM_CLASSES: 2
|
2296 |
+
POSITIVE_FRACTION: 0.25
|
2297 |
+
PROPOSAL_APPEND_GT: True
|
2298 |
+
SCORE_THRESH_TEST: 0.05
|
2299 |
+
ROI_KEYPOINT_HEAD:
|
2300 |
+
CONV_DIMS: (512, 512, 512, 512, 512, 512, 512, 512)
|
2301 |
+
LOSS_WEIGHT: 1.0
|
2302 |
+
MIN_KEYPOINTS_PER_IMAGE: 1
|
2303 |
+
NAME: KRCNNConvDeconvUpsampleHead
|
2304 |
+
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: True
|
2305 |
+
NUM_KEYPOINTS: 17
|
2306 |
+
POOLER_RESOLUTION: 14
|
2307 |
+
POOLER_SAMPLING_RATIO: 0
|
2308 |
+
POOLER_TYPE: ROIAlignV2
|
2309 |
+
ROI_MASK_HEAD:
|
2310 |
+
CLS_AGNOSTIC_MASK: False
|
2311 |
+
CONV_DIM: 256
|
2312 |
+
NAME: MaskRCNNConvUpsampleHead
|
2313 |
+
NORM:
|
2314 |
+
NUM_CONV: 4
|
2315 |
+
POOLER_RESOLUTION: 14
|
2316 |
+
POOLER_SAMPLING_RATIO: 0
|
2317 |
+
POOLER_TYPE: ROIAlignV2
|
2318 |
+
RPN:
|
2319 |
+
BATCH_SIZE_PER_IMAGE: 256
|
2320 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
2321 |
+
BBOX_REG_LOSS_WEIGHT: 1.0
|
2322 |
+
BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0)
|
2323 |
+
BOUNDARY_THRESH: -1
|
2324 |
+
HEAD_NAME: StandardRPNHead
|
2325 |
+
IN_FEATURES: ['p2', 'p3', 'p4', 'p5', 'p6']
|
2326 |
+
IOU_LABELS: [0, -1, 1]
|
2327 |
+
IOU_THRESHOLDS: [0.3, 0.7]
|
2328 |
+
LOSS_WEIGHT: 1.0
|
2329 |
+
NMS_THRESH: 0.7
|
2330 |
+
POSITIVE_FRACTION: 0.5
|
2331 |
+
POST_NMS_TOPK_TEST: 1000
|
2332 |
+
POST_NMS_TOPK_TRAIN: 1000
|
2333 |
+
PRE_NMS_TOPK_TEST: 1000
|
2334 |
+
PRE_NMS_TOPK_TRAIN: 2000
|
2335 |
+
SMOOTH_L1_BETA: 0.0
|
2336 |
+
SEM_SEG_HEAD:
|
2337 |
+
COMMON_STRIDE: 4
|
2338 |
+
CONVS_DIM: 128
|
2339 |
+
IGNORE_VALUE: 255
|
2340 |
+
IN_FEATURES: ['p2', 'p3', 'p4', 'p5']
|
2341 |
+
LOSS_WEIGHT: 1.0
|
2342 |
+
NAME: SemSegFPNHead
|
2343 |
+
NORM: GN
|
2344 |
+
NUM_CLASSES: 54
|
2345 |
+
WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/model_final.pth
|
2346 |
+
OUTPUT_DIR: /content/drive/MyDrive/layoutparser/modele
|
2347 |
+
SEED: -1
|
2348 |
+
SOLVER:
|
2349 |
+
AMP:
|
2350 |
+
ENABLED: False
|
2351 |
+
BASE_LR: 0.00025
|
2352 |
+
BIAS_LR_FACTOR: 1.0
|
2353 |
+
CHECKPOINT_PERIOD: 50
|
2354 |
+
CLIP_GRADIENTS:
|
2355 |
+
CLIP_TYPE: value
|
2356 |
+
CLIP_VALUE: 1.0
|
2357 |
+
ENABLED: False
|
2358 |
+
NORM_TYPE: 2.0
|
2359 |
+
GAMMA: 0.1
|
2360 |
+
IMS_PER_BATCH: 2
|
2361 |
+
LR_SCHEDULER_NAME: WarmupMultiStepLR
|
2362 |
+
MAX_ITER: 300
|
2363 |
+
MOMENTUM: 0.9
|
2364 |
+
NESTEROV: False
|
2365 |
+
REFERENCE_WORLD_SIZE: 0
|
2366 |
+
STEPS: (210000, 250000)
|
2367 |
+
WARMUP_FACTOR: 0.001
|
2368 |
+
WARMUP_ITERS: 1000
|
2369 |
+
WARMUP_METHOD: linear
|
2370 |
+
WEIGHT_DECAY: 0.0001
|
2371 |
+
WEIGHT_DECAY_BIAS: 0.0001
|
2372 |
+
WEIGHT_DECAY_NORM: 0.0
|
2373 |
+
TEST:
|
2374 |
+
AUG:
|
2375 |
+
ENABLED: False
|
2376 |
+
FLIP: True
|
2377 |
+
MAX_SIZE: 4000
|
2378 |
+
MIN_SIZES: (400, 500, 600, 700, 800, 900, 1000, 1100, 1200)
|
2379 |
+
DETECTIONS_PER_IMAGE: 100
|
2380 |
+
EVAL_PERIOD: 0
|
2381 |
+
EXPECTED_RESULTS: []
|
2382 |
+
KEYPOINT_OKS_SIGMAS: []
|
2383 |
+
PRECISE_BN:
|
2384 |
+
ENABLED: False
|
2385 |
+
NUM_ITER: 200
|
2386 |
+
VERSION: 2
|
2387 |
+
VIS_PERIOD: 0
|
2388 |
+
[04/19 13:21:20] detectron2 INFO: Full config saved to /content/drive/MyDrive/layoutparser/modele/config.yaml
|
2389 |
+
[04/19 13:21:20] d2.utils.env INFO: Using a generated random seed 20391353
|
2390 |
+
[04/19 13:21:23] d2.engine.defaults INFO: Model:
|
2391 |
+
GeneralizedRCNN(
|
2392 |
+
(backbone): FPN(
|
2393 |
+
(fpn_lateral2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
|
2394 |
+
(fpn_output2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
2395 |
+
(fpn_lateral3): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
|
2396 |
+
(fpn_output3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
2397 |
+
(fpn_lateral4): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
|
2398 |
+
(fpn_output4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
2399 |
+
(fpn_lateral5): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
|
2400 |
+
(fpn_output5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
2401 |
+
(top_block): LastLevelMaxPool()
|
2402 |
+
(bottom_up): ResNet(
|
2403 |
+
(stem): BasicStem(
|
2404 |
+
(conv1): Conv2d(
|
2405 |
+
3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False
|
2406 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
2407 |
+
)
|
2408 |
+
)
|
2409 |
+
(res2): Sequential(
|
2410 |
+
(0): BottleneckBlock(
|
2411 |
+
(shortcut): Conv2d(
|
2412 |
+
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2413 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
2414 |
+
)
|
2415 |
+
(conv1): Conv2d(
|
2416 |
+
64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2417 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
2418 |
+
)
|
2419 |
+
(conv2): Conv2d(
|
2420 |
+
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
2421 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
2422 |
+
)
|
2423 |
+
(conv3): Conv2d(
|
2424 |
+
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2425 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
2426 |
+
)
|
2427 |
+
)
|
2428 |
+
(1): BottleneckBlock(
|
2429 |
+
(conv1): Conv2d(
|
2430 |
+
256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2431 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
2432 |
+
)
|
2433 |
+
(conv2): Conv2d(
|
2434 |
+
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
2435 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
2436 |
+
)
|
2437 |
+
(conv3): Conv2d(
|
2438 |
+
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2439 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
2440 |
+
)
|
2441 |
+
)
|
2442 |
+
(2): BottleneckBlock(
|
2443 |
+
(conv1): Conv2d(
|
2444 |
+
256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2445 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
2446 |
+
)
|
2447 |
+
(conv2): Conv2d(
|
2448 |
+
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
2449 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
2450 |
+
)
|
2451 |
+
(conv3): Conv2d(
|
2452 |
+
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2453 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
2454 |
+
)
|
2455 |
+
)
|
2456 |
+
)
|
2457 |
+
(res3): Sequential(
|
2458 |
+
(0): BottleneckBlock(
|
2459 |
+
(shortcut): Conv2d(
|
2460 |
+
256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
|
2461 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
2462 |
+
)
|
2463 |
+
(conv1): Conv2d(
|
2464 |
+
256, 128, kernel_size=(1, 1), stride=(2, 2), bias=False
|
2465 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
2466 |
+
)
|
2467 |
+
(conv2): Conv2d(
|
2468 |
+
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
2469 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
2470 |
+
)
|
2471 |
+
(conv3): Conv2d(
|
2472 |
+
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2473 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
2474 |
+
)
|
2475 |
+
)
|
2476 |
+
(1): BottleneckBlock(
|
2477 |
+
(conv1): Conv2d(
|
2478 |
+
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2479 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
2480 |
+
)
|
2481 |
+
(conv2): Conv2d(
|
2482 |
+
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
2483 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
2484 |
+
)
|
2485 |
+
(conv3): Conv2d(
|
2486 |
+
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2487 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
2488 |
+
)
|
2489 |
+
)
|
2490 |
+
(2): BottleneckBlock(
|
2491 |
+
(conv1): Conv2d(
|
2492 |
+
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2493 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
2494 |
+
)
|
2495 |
+
(conv2): Conv2d(
|
2496 |
+
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
2497 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
2498 |
+
)
|
2499 |
+
(conv3): Conv2d(
|
2500 |
+
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2501 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
2502 |
+
)
|
2503 |
+
)
|
2504 |
+
(3): BottleneckBlock(
|
2505 |
+
(conv1): Conv2d(
|
2506 |
+
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2507 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
2508 |
+
)
|
2509 |
+
(conv2): Conv2d(
|
2510 |
+
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
2511 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
2512 |
+
)
|
2513 |
+
(conv3): Conv2d(
|
2514 |
+
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2515 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
2516 |
+
)
|
2517 |
+
)
|
2518 |
+
)
|
2519 |
+
(res4): Sequential(
|
2520 |
+
(0): BottleneckBlock(
|
2521 |
+
(shortcut): Conv2d(
|
2522 |
+
512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False
|
2523 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
2524 |
+
)
|
2525 |
+
(conv1): Conv2d(
|
2526 |
+
512, 256, kernel_size=(1, 1), stride=(2, 2), bias=False
|
2527 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
2528 |
+
)
|
2529 |
+
(conv2): Conv2d(
|
2530 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
2531 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
2532 |
+
)
|
2533 |
+
(conv3): Conv2d(
|
2534 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2535 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
2536 |
+
)
|
2537 |
+
)
|
2538 |
+
(1): BottleneckBlock(
|
2539 |
+
(conv1): Conv2d(
|
2540 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2541 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
2542 |
+
)
|
2543 |
+
(conv2): Conv2d(
|
2544 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
2545 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
2546 |
+
)
|
2547 |
+
(conv3): Conv2d(
|
2548 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2549 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
2550 |
+
)
|
2551 |
+
)
|
2552 |
+
(2): BottleneckBlock(
|
2553 |
+
(conv1): Conv2d(
|
2554 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2555 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
2556 |
+
)
|
2557 |
+
(conv2): Conv2d(
|
2558 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
2559 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
2560 |
+
)
|
2561 |
+
(conv3): Conv2d(
|
2562 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2563 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
2564 |
+
)
|
2565 |
+
)
|
2566 |
+
(3): BottleneckBlock(
|
2567 |
+
(conv1): Conv2d(
|
2568 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2569 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
2570 |
+
)
|
2571 |
+
(conv2): Conv2d(
|
2572 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
2573 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
2574 |
+
)
|
2575 |
+
(conv3): Conv2d(
|
2576 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2577 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
2578 |
+
)
|
2579 |
+
)
|
2580 |
+
(4): BottleneckBlock(
|
2581 |
+
(conv1): Conv2d(
|
2582 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2583 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
2584 |
+
)
|
2585 |
+
(conv2): Conv2d(
|
2586 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
2587 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
2588 |
+
)
|
2589 |
+
(conv3): Conv2d(
|
2590 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2591 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
2592 |
+
)
|
2593 |
+
)
|
2594 |
+
(5): BottleneckBlock(
|
2595 |
+
(conv1): Conv2d(
|
2596 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2597 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
2598 |
+
)
|
2599 |
+
(conv2): Conv2d(
|
2600 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
2601 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
2602 |
+
)
|
2603 |
+
(conv3): Conv2d(
|
2604 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2605 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
2606 |
+
)
|
2607 |
+
)
|
2608 |
+
)
|
2609 |
+
(res5): Sequential(
|
2610 |
+
(0): BottleneckBlock(
|
2611 |
+
(shortcut): Conv2d(
|
2612 |
+
1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False
|
2613 |
+
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
|
2614 |
+
)
|
2615 |
+
(conv1): Conv2d(
|
2616 |
+
1024, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
|
2617 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
2618 |
+
)
|
2619 |
+
(conv2): Conv2d(
|
2620 |
+
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
2621 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
2622 |
+
)
|
2623 |
+
(conv3): Conv2d(
|
2624 |
+
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2625 |
+
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
|
2626 |
+
)
|
2627 |
+
)
|
2628 |
+
(1): BottleneckBlock(
|
2629 |
+
(conv1): Conv2d(
|
2630 |
+
2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2631 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
2632 |
+
)
|
2633 |
+
(conv2): Conv2d(
|
2634 |
+
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
2635 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
2636 |
+
)
|
2637 |
+
(conv3): Conv2d(
|
2638 |
+
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2639 |
+
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
|
2640 |
+
)
|
2641 |
+
)
|
2642 |
+
(2): BottleneckBlock(
|
2643 |
+
(conv1): Conv2d(
|
2644 |
+
2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2645 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
2646 |
+
)
|
2647 |
+
(conv2): Conv2d(
|
2648 |
+
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
2649 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
2650 |
+
)
|
2651 |
+
(conv3): Conv2d(
|
2652 |
+
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
|
2653 |
+
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
|
2654 |
+
)
|
2655 |
+
)
|
2656 |
+
)
|
2657 |
+
)
|
2658 |
+
)
|
2659 |
+
(proposal_generator): RPN(
|
2660 |
+
(rpn_head): StandardRPNHead(
|
2661 |
+
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
2662 |
+
(objectness_logits): Conv2d(256, 3, kernel_size=(1, 1), stride=(1, 1))
|
2663 |
+
(anchor_deltas): Conv2d(256, 12, kernel_size=(1, 1), stride=(1, 1))
|
2664 |
+
)
|
2665 |
+
(anchor_generator): DefaultAnchorGenerator(
|
2666 |
+
(cell_anchors): BufferList()
|
2667 |
+
)
|
2668 |
+
)
|
2669 |
+
(roi_heads): StandardROIHeads(
|
2670 |
+
(box_pooler): ROIPooler(
|
2671 |
+
(level_poolers): ModuleList(
|
2672 |
+
(0): ROIAlign(output_size=(7, 7), spatial_scale=0.25, sampling_ratio=0, aligned=True)
|
2673 |
+
(1): ROIAlign(output_size=(7, 7), spatial_scale=0.125, sampling_ratio=0, aligned=True)
|
2674 |
+
(2): ROIAlign(output_size=(7, 7), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
|
2675 |
+
(3): ROIAlign(output_size=(7, 7), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
|
2676 |
+
)
|
2677 |
+
)
|
2678 |
+
(box_head): FastRCNNConvFCHead(
|
2679 |
+
(flatten): Flatten(start_dim=1, end_dim=-1)
|
2680 |
+
(fc1): Linear(in_features=12544, out_features=1024, bias=True)
|
2681 |
+
(fc_relu1): ReLU()
|
2682 |
+
(fc2): Linear(in_features=1024, out_features=1024, bias=True)
|
2683 |
+
(fc_relu2): ReLU()
|
2684 |
+
)
|
2685 |
+
(box_predictor): FastRCNNOutputLayers(
|
2686 |
+
(cls_score): Linear(in_features=1024, out_features=3, bias=True)
|
2687 |
+
(bbox_pred): Linear(in_features=1024, out_features=8, bias=True)
|
2688 |
+
)
|
2689 |
+
(mask_pooler): ROIPooler(
|
2690 |
+
(level_poolers): ModuleList(
|
2691 |
+
(0): ROIAlign(output_size=(14, 14), spatial_scale=0.25, sampling_ratio=0, aligned=True)
|
2692 |
+
(1): ROIAlign(output_size=(14, 14), spatial_scale=0.125, sampling_ratio=0, aligned=True)
|
2693 |
+
(2): ROIAlign(output_size=(14, 14), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
|
2694 |
+
(3): ROIAlign(output_size=(14, 14), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
|
2695 |
+
)
|
2696 |
+
)
|
2697 |
+
(mask_head): MaskRCNNConvUpsampleHead(
|
2698 |
+
(mask_fcn1): Conv2d(
|
2699 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
2700 |
+
(activation): ReLU()
|
2701 |
+
)
|
2702 |
+
(mask_fcn2): Conv2d(
|
2703 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
2704 |
+
(activation): ReLU()
|
2705 |
+
)
|
2706 |
+
(mask_fcn3): Conv2d(
|
2707 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
2708 |
+
(activation): ReLU()
|
2709 |
+
)
|
2710 |
+
(mask_fcn4): Conv2d(
|
2711 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
2712 |
+
(activation): ReLU()
|
2713 |
+
)
|
2714 |
+
(deconv): ConvTranspose2d(256, 256, kernel_size=(2, 2), stride=(2, 2))
|
2715 |
+
(deconv_relu): ReLU()
|
2716 |
+
(predictor): Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1))
|
2717 |
+
)
|
2718 |
+
)
|
2719 |
+
)
|
2720 |
+
[04/19 13:21:23] d2.data.dataset_mapper INFO: [DatasetMapper] Augmentations used in training: [ResizeShortestEdge(short_edge_length=(640, 672, 704, 736, 768, 800), max_size=1333, sample_style='choice'), RandomFlip(), RandomRotation(angle=[-90.0, 0.0])]
|
2721 |
+
[04/19 13:21:23] d2.data.datasets.coco INFO: Loaded 36 images in COCO format from /content/drive/MyDrive/layoutparser/dataset6/train/via_project_19Apr2023_15h0m_coco.json
|
2722 |
+
[04/19 13:21:23] d2.data.build INFO: Removed 6 images with no usable annotations. 30 images left.
|
2723 |
+
[04/19 13:21:23] d2.data.build INFO: Distribution of instances among all 2 categories:
|
2724 |
+
[36m| category | #instances | category | #instances |
|
2725 |
+
|:----------:|:-------------|:----------:|:-------------|
|
2726 |
+
| | 89 | | 0 |
|
2727 |
+
| | | | |
|
2728 |
+
| total | 89 | | |[0m
|
2729 |
+
[04/19 13:21:23] d2.data.build INFO: Using training sampler TrainingSampler
|
2730 |
+
[04/19 13:21:23] d2.data.common INFO: Serializing 30 elements to byte tensors and concatenating them all ...
|
2731 |
+
[04/19 13:21:23] d2.data.common INFO: Serialized dataset takes 0.01 MiB
|
2732 |
+
[04/19 13:21:23] d2.solver.build WARNING: SOLVER.STEPS contains values larger than SOLVER.MAX_ITER. These values will be ignored.
|
2733 |
+
[04/19 13:21:26] fvcore.common.checkpoint INFO: Loading checkpoint from /content/drive/MyDrive/layoutparser/modele/modele3_NP?/model_final.pth
|
2734 |
+
[04/19 13:21:31] d2.engine.train_loop INFO: Starting training from iteration 0
|
2735 |
+
[04/19 13:21:59] d2.utils.events INFO: eta: 0:03:57 iter: 19 total_loss: 0.5817 loss_cls: 0.122 loss_box_reg: 0.1813 loss_mask: 0.2043 loss_rpn_cls: 0.01694 loss_rpn_loc: 0.02236 time: 0.8670 data_time: 0.0615 lr: 4.9953e-06 max_mem: 4741M
|
2736 |
+
[04/19 13:22:16] d2.utils.events INFO: eta: 0:03:36 iter: 39 total_loss: 0.5271 loss_cls: 0.108 loss_box_reg: 0.1928 loss_mask: 0.1966 loss_rpn_cls: 0.01371 loss_rpn_loc: 0.0178 time: 0.8510 data_time: 0.0094 lr: 9.9902e-06 max_mem: 4741M
|
2737 |
+
[04/19 13:22:25] fvcore.common.checkpoint INFO: Saving checkpoint to /content/drive/MyDrive/layoutparser/modele/model_0000049.pth
|
2738 |
+
[04/19 13:22:35] d2.utils.events INFO: eta: 0:03:22 iter: 59 total_loss: 0.5328 loss_cls: 0.09943 loss_box_reg: 0.1768 loss_mask: 0.1878 loss_rpn_cls: 0.01652 loss_rpn_loc: 0.02977 time: 0.8703 data_time: 0.0149 lr: 1.4985e-05 max_mem: 4742M
|
2739 |
+
[04/19 13:22:53] d2.utils.events INFO: eta: 0:03:09 iter: 79 total_loss: 0.5528 loss_cls: 0.1002 loss_box_reg: 0.1706 loss_mask: 0.2053 loss_rpn_cls: 0.01738 loss_rpn_loc: 0.02357 time: 0.8795 data_time: 0.0108 lr: 1.998e-05 max_mem: 4742M
|
2740 |
+
[04/19 13:23:11] fvcore.common.checkpoint INFO: Saving checkpoint to /content/drive/MyDrive/layoutparser/modele/model_0000099.pth
|
2741 |
+
[04/19 13:23:13] d2.utils.events INFO: eta: 0:02:53 iter: 99 total_loss: 0.5248 loss_cls: 0.08265 loss_box_reg: 0.1726 loss_mask: 0.1772 loss_rpn_cls: 0.01976 loss_rpn_loc: 0.02078 time: 0.8858 data_time: 0.0114 lr: 2.4975e-05 max_mem: 4742M
|
2742 |
+
[04/19 13:23:32] d2.utils.events INFO: eta: 0:02:38 iter: 119 total_loss: 0.5286 loss_cls: 0.09827 loss_box_reg: 0.1722 loss_mask: 0.1774 loss_rpn_cls: 0.01788 loss_rpn_loc: 0.0259 time: 0.8971 data_time: 0.0096 lr: 2.997e-05 max_mem: 4742M
|
2743 |
+
[04/19 13:23:50] d2.utils.events INFO: eta: 0:02:21 iter: 139 total_loss: 0.5629 loss_cls: 0.09456 loss_box_reg: 0.1846 loss_mask: 0.1865 loss_rpn_cls: 0.02039 loss_rpn_loc: 0.02839 time: 0.9012 data_time: 0.0110 lr: 3.4965e-05 max_mem: 4742M
|
2744 |
+
[04/19 13:23:59] fvcore.common.checkpoint INFO: Saving checkpoint to /content/drive/MyDrive/layoutparser/modele/model_0000149.pth
|
2745 |
+
[04/19 13:24:10] d2.utils.events INFO: eta: 0:02:04 iter: 159 total_loss: 0.491 loss_cls: 0.09832 loss_box_reg: 0.1694 loss_mask: 0.1691 loss_rpn_cls: 0.008938 loss_rpn_loc: 0.01734 time: 0.9020 data_time: 0.0080 lr: 3.996e-05 max_mem: 4742M
|
2746 |
+
[04/19 13:24:29] d2.utils.events INFO: eta: 0:01:47 iter: 179 total_loss: 0.4756 loss_cls: 0.08483 loss_box_reg: 0.162 loss_mask: 0.1571 loss_rpn_cls: 0.01482 loss_rpn_loc: 0.03214 time: 0.9094 data_time: 0.0101 lr: 4.4955e-05 max_mem: 4742M
|
2747 |
+
[04/19 13:24:49] fvcore.common.checkpoint INFO: Saving checkpoint to /content/drive/MyDrive/layoutparser/modele/model_0000199.pth
|
2748 |
+
[04/19 13:24:50] d2.utils.events INFO: eta: 0:01:30 iter: 199 total_loss: 0.4405 loss_cls: 0.08707 loss_box_reg: 0.1718 loss_mask: 0.1673 loss_rpn_cls: 0.008687 loss_rpn_loc: 0.02504 time: 0.9157 data_time: 0.0107 lr: 4.995e-05 max_mem: 4742M
|
2749 |
+
[04/19 13:25:09] d2.utils.events INFO: eta: 0:01:12 iter: 219 total_loss: 0.4541 loss_cls: 0.08539 loss_box_reg: 0.1581 loss_mask: 0.1605 loss_rpn_cls: 0.01627 loss_rpn_loc: 0.01755 time: 0.9168 data_time: 0.0112 lr: 5.4945e-05 max_mem: 4742M
|
2750 |
+
[04/19 13:25:28] d2.utils.events INFO: eta: 0:00:54 iter: 239 total_loss: 0.4896 loss_cls: 0.09352 loss_box_reg: 0.1829 loss_mask: 0.1675 loss_rpn_cls: 0.0139 loss_rpn_loc: 0.02522 time: 0.9196 data_time: 0.0080 lr: 5.994e-05 max_mem: 4742M
|
2751 |
+
[04/19 13:25:37] fvcore.common.checkpoint INFO: Saving checkpoint to /content/drive/MyDrive/layoutparser/modele/model_0000249.pth
|
2752 |
+
[04/19 13:25:48] d2.utils.events INFO: eta: 0:00:36 iter: 259 total_loss: 0.4373 loss_cls: 0.06817 loss_box_reg: 0.1526 loss_mask: 0.1634 loss_rpn_cls: 0.0137 loss_rpn_loc: 0.02394 time: 0.9241 data_time: 0.0098 lr: 6.4935e-05 max_mem: 4742M
|
2753 |
+
[04/19 13:26:08] d2.utils.events INFO: eta: 0:00:18 iter: 279 total_loss: 0.4922 loss_cls: 0.1011 loss_box_reg: 0.1941 loss_mask: 0.1613 loss_rpn_cls: 0.01023 loss_rpn_loc: 0.03586 time: 0.9272 data_time: 0.0080 lr: 6.993e-05 max_mem: 4742M
|
2754 |
+
[04/19 13:26:28] fvcore.common.checkpoint INFO: Saving checkpoint to /content/drive/MyDrive/layoutparser/modele/model_0000299.pth
|
2755 |
+
[04/19 13:26:29] fvcore.common.checkpoint INFO: Saving checkpoint to /content/drive/MyDrive/layoutparser/modele/model_final.pth
|
2756 |
+
[04/19 13:26:31] d2.utils.events INFO: eta: 0:00:00 iter: 299 total_loss: 0.4673 loss_cls: 0.08663 loss_box_reg: 0.178 loss_mask: 0.1653 loss_rpn_cls: 0.006576 loss_rpn_loc: 0.02131 time: 0.9322 data_time: 0.0116 lr: 7.4925e-05 max_mem: 4742M
|
2757 |
+
[04/19 13:26:31] d2.engine.hooks INFO: Overall training speed: 298 iterations in 0:04:37 (0.9322 s / it)
|
2758 |
+
[04/19 13:26:31] d2.engine.hooks INFO: Total training time: 0:04:47 (0:00:09 on hooks)
|
metrics.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"data_time": 0.0078072735000205284, "eta_seconds": 237.39525767999226, "fast_rcnn/cls_accuracy": 0.95166015625, "fast_rcnn/false_negative": 0.3174242424242424, "fast_rcnn/fg_cls_accuracy": 0.6825757575757576, "iteration": 19, "loss_box_reg": 0.18126913160085678, "loss_cls": 0.12200355529785156, "loss_mask": 0.20430559664964676, "loss_rpn_cls": 0.016937402077019215, "loss_rpn_loc": 0.022357339970767498, "lr": 4.99525e-06, "mask_rcnn/accuracy": 0.9157851735164111, "mask_rcnn/false_negative": 0.08747882744709648, "mask_rcnn/false_positive": 0.0695743153731449, "roi_head/num_bg_samples": 451.75, "roi_head/num_fg_samples": 60.25, "rpn/num_neg_anchors": 241.0, "rpn/num_pos_anchors": 15.0, "time": 0.8478402059999723, "total_loss": 0.5817432205658406}
|
2 |
+
{"data_time": 0.00806954000006499, "eta_seconds": 216.88964089000365, "fast_rcnn/cls_accuracy": 0.958984375, "fast_rcnn/false_negative": 0.16390334811387441, "fast_rcnn/fg_cls_accuracy": 0.8360966518861256, "iteration": 39, "loss_box_reg": 0.19283011555671692, "loss_cls": 0.1080242358148098, "loss_mask": 0.19663811475038528, "loss_rpn_cls": 0.013711910229176283, "loss_rpn_loc": 0.017802692018449306, "lr": 9.99025e-06, "mask_rcnn/accuracy": 0.9198041697517024, "mask_rcnn/false_negative": 0.06658453429298014, "mask_rcnn/false_positive": 0.0970188841812121, "roi_head/num_bg_samples": 457.75, "roi_head/num_fg_samples": 54.25, "rpn/num_neg_anchors": 246.5, "rpn/num_pos_anchors": 9.5, "time": 0.833926538500009, "total_loss": 0.5270909374230541}
|
3 |
+
{"data_time": 0.00786942999997109, "eta_seconds": 202.049228399992, "fast_rcnn/cls_accuracy": 0.96044921875, "fast_rcnn/false_negative": 0.17474278128111514, "fast_rcnn/fg_cls_accuracy": 0.8252572187188849, "iteration": 59, "loss_box_reg": 0.17683134227991104, "loss_cls": 0.09942953288555145, "loss_mask": 0.18784072250127792, "loss_rpn_cls": 0.016522271558642387, "loss_rpn_loc": 0.029772663488984108, "lr": 1.4985249999999999e-05, "mask_rcnn/accuracy": 0.9230181719833241, "mask_rcnn/false_negative": 0.0657658037432446, "mask_rcnn/false_positive": 0.0900701805017563, "roi_head/num_bg_samples": 448.5, "roi_head/num_fg_samples": 63.5, "rpn/num_neg_anchors": 236.75, "rpn/num_pos_anchors": 19.25, "time": 0.9238360184999692, "total_loss": 0.5328234452754259}
|
4 |
+
{"data_time": 0.008662080000021888, "eta_seconds": 189.94938489998844, "fast_rcnn/cls_accuracy": 0.95556640625, "fast_rcnn/false_negative": 0.18949298469387754, "fast_rcnn/fg_cls_accuracy": 0.8105070153061225, "iteration": 79, "loss_box_reg": 0.1706439107656479, "loss_cls": 0.10022062435746193, "loss_mask": 0.2053210288286209, "loss_rpn_cls": 0.01738046295940876, "loss_rpn_loc": 0.023568041622638702, "lr": 1.998025e-05, "mask_rcnn/accuracy": 0.9150773466560775, "mask_rcnn/false_negative": 0.07122972866131304, "mask_rcnn/false_positive": 0.09154645211619379, "roi_head/num_bg_samples": 449.25, "roi_head/num_fg_samples": 62.75, "rpn/num_neg_anchors": 240.25, "rpn/num_pos_anchors": 15.75, "time": 0.8898190154999952, "total_loss": 0.5527677149511874}
|
5 |
+
{"data_time": 0.00794200899997577, "eta_seconds": 173.0306518999953, "fast_rcnn/cls_accuracy": 0.96337890625, "fast_rcnn/false_negative": 0.16227766227766227, "fast_rcnn/fg_cls_accuracy": 0.8377223377223377, "iteration": 99, "loss_box_reg": 0.1726074069738388, "loss_cls": 0.08265357092022896, "loss_mask": 0.17723622918128967, "loss_rpn_cls": 0.019758455455303192, "loss_rpn_loc": 0.020779786631464958, "lr": 2.497525e-05, "mask_rcnn/accuracy": 0.926530693319756, "mask_rcnn/false_negative": 0.060582644882807374, "mask_rcnn/false_positive": 0.08944657671381483, "roi_head/num_bg_samples": 455.25, "roi_head/num_fg_samples": 56.75, "rpn/num_neg_anchors": 241.0, "rpn/num_pos_anchors": 15.0, "time": 0.8802101579999544, "total_loss": 0.5247725388035178}
|
6 |
+
{"data_time": 0.008146928499968453, "eta_seconds": 158.05110491999926, "fast_rcnn/cls_accuracy": 0.9560546875, "fast_rcnn/false_negative": 0.17490097977902858, "fast_rcnn/fg_cls_accuracy": 0.8250990202209715, "iteration": 119, "loss_box_reg": 0.1722310408949852, "loss_cls": 0.09827171638607979, "loss_mask": 0.17743538320064545, "loss_rpn_cls": 0.01788422279059887, "loss_rpn_loc": 0.02590081002563238, "lr": 2.997025e-05, "mask_rcnn/accuracy": 0.9272291260401985, "mask_rcnn/false_negative": 0.05649131234239554, "mask_rcnn/false_positive": 0.08877379884621533, "roi_head/num_bg_samples": 445.5, "roi_head/num_fg_samples": 66.5, "rpn/num_neg_anchors": 238.25, "rpn/num_pos_anchors": 17.75, "time": 0.9440659295000273, "total_loss": 0.5285513289272785}
|
7 |
+
{"data_time": 0.008035532000008061, "eta_seconds": 141.67043927999657, "fast_rcnn/cls_accuracy": 0.96142578125, "fast_rcnn/false_negative": 0.16287878787878787, "fast_rcnn/fg_cls_accuracy": 0.8371212121212122, "iteration": 139, "loss_box_reg": 0.18458272516727448, "loss_cls": 0.09455696865916252, "loss_mask": 0.18651333451271057, "loss_rpn_cls": 0.020386052317917347, "loss_rpn_loc": 0.02839471399784088, "lr": 3.496525e-05, "mask_rcnn/accuracy": 0.9227865388579675, "mask_rcnn/false_negative": 0.07823887426949008, "mask_rcnn/false_positive": 0.07714565725517517, "roi_head/num_bg_samples": 446.5, "roi_head/num_fg_samples": 65.5, "rpn/num_neg_anchors": 238.25, "rpn/num_pos_anchors": 17.75, "time": 0.9290176410000299, "total_loss": 0.5628998675383627}
|
8 |
+
{"data_time": 0.007225867999977709, "eta_seconds": 124.62774071999547, "fast_rcnn/cls_accuracy": 0.96044921875, "fast_rcnn/false_negative": 0.1421979510625688, "fast_rcnn/fg_cls_accuracy": 0.8578020489374312, "iteration": 159, "loss_box_reg": 0.1694139465689659, "loss_cls": 0.0983157642185688, "loss_mask": 0.1690504029393196, "loss_rpn_cls": 0.008938258048146963, "loss_rpn_loc": 0.017336225137114525, "lr": 3.996025e-05, "mask_rcnn/accuracy": 0.9304054076088729, "mask_rcnn/false_negative": 0.05453408259940976, "mask_rcnn/false_positive": 0.09687290684287767, "roi_head/num_bg_samples": 445.25, "roi_head/num_fg_samples": 66.75, "rpn/num_neg_anchors": 241.5, "rpn/num_pos_anchors": 14.5, "time": 0.9201212560000158, "total_loss": 0.4909819355234504}
|
9 |
+
{"data_time": 0.00790757049998092, "eta_seconds": 107.98438782000176, "fast_rcnn/cls_accuracy": 0.9638671875, "fast_rcnn/false_negative": 0.14458689458689458, "fast_rcnn/fg_cls_accuracy": 0.8554131054131053, "iteration": 179, "loss_box_reg": 0.16203460097312927, "loss_cls": 0.08482548221945763, "loss_mask": 0.15712527930736542, "loss_rpn_cls": 0.014815961476415396, "loss_rpn_loc": 0.03214004077017307, "lr": 4.4955249999999996e-05, "mask_rcnn/accuracy": 0.9360310090632289, "mask_rcnn/false_negative": 0.052590317311748784, "mask_rcnn/false_positive": 0.07957992414234528, "roi_head/num_bg_samples": 450.25, "roi_head/num_fg_samples": 61.75, "rpn/num_neg_anchors": 234.75, "rpn/num_pos_anchors": 21.25, "time": 0.9635756369999626, "total_loss": 0.4756494527682662}
|
10 |
+
{"data_time": 0.0086770730000012, "eta_seconds": 90.48390140000038, "fast_rcnn/cls_accuracy": 0.96484375, "fast_rcnn/false_negative": 0.1505813953488372, "fast_rcnn/fg_cls_accuracy": 0.8494186046511627, "iteration": 199, "loss_box_reg": 0.17175166308879852, "loss_cls": 0.08706623315811157, "loss_mask": 0.16731856018304825, "loss_rpn_cls": 0.008686745539307594, "loss_rpn_loc": 0.02504018973559141, "lr": 4.995025e-05, "mask_rcnn/accuracy": 0.9339812504672198, "mask_rcnn/false_negative": 0.05094937251124136, "mask_rcnn/false_positive": 0.08033686683134766, "roi_head/num_bg_samples": 440.25, "roi_head/num_fg_samples": 71.75, "rpn/num_neg_anchors": 237.25, "rpn/num_pos_anchors": 18.75, "time": 0.9430582679999588, "total_loss": 0.44054083712399006}
|
11 |
+
{"data_time": 0.008456396499980201, "eta_seconds": 72.20415547999892, "fast_rcnn/cls_accuracy": 0.96435546875, "fast_rcnn/false_negative": 0.1619129207821004, "fast_rcnn/fg_cls_accuracy": 0.8380870792178996, "iteration": 219, "loss_box_reg": 0.15810220688581467, "loss_cls": 0.0853872038424015, "loss_mask": 0.16054382175207138, "loss_rpn_cls": 0.0162694756872952, "loss_rpn_loc": 0.017554521560668945, "lr": 5.4945249999999994e-05, "mask_rcnn/accuracy": 0.9320155062452881, "mask_rcnn/false_negative": 0.04592440045344945, "mask_rcnn/false_positive": 0.0795499642582482, "roi_head/num_bg_samples": 451.5, "roi_head/num_fg_samples": 60.5, "rpn/num_neg_anchors": 242.5, "rpn/num_pos_anchors": 13.5, "time": 0.8711087875000203, "total_loss": 0.45414171810261905}
|
12 |
+
{"data_time": 0.007589212500022313, "eta_seconds": 54.58721795999736, "fast_rcnn/cls_accuracy": 0.95849609375, "fast_rcnn/false_negative": 0.16044207317073172, "fast_rcnn/fg_cls_accuracy": 0.8395579268292683, "iteration": 239, "loss_box_reg": 0.1828964427113533, "loss_cls": 0.09351714327931404, "loss_mask": 0.16754969954490662, "loss_rpn_cls": 0.013895321637392044, "loss_rpn_loc": 0.025216294452548027, "lr": 5.994025e-05, "mask_rcnn/accuracy": 0.9330968072439287, "mask_rcnn/false_negative": 0.06683586210006436, "mask_rcnn/false_positive": 0.07417598373963799, "roi_head/num_bg_samples": 444.5, "roi_head/num_fg_samples": 67.5, "rpn/num_neg_anchors": 236.75, "rpn/num_pos_anchors": 19.25, "time": 0.9715423750000127, "total_loss": 0.48956847935914993}
|
13 |
+
{"data_time": 0.007639148999999179, "eta_seconds": 36.52443835999975, "fast_rcnn/cls_accuracy": 0.97265625, "fast_rcnn/false_negative": 0.13006756756756757, "fast_rcnn/fg_cls_accuracy": 0.8699324324324325, "iteration": 259, "loss_box_reg": 0.15263817459344864, "loss_cls": 0.06817140802741051, "loss_mask": 0.16339514404535294, "loss_rpn_cls": 0.013702766969799995, "loss_rpn_loc": 0.02394229080528021, "lr": 6.493524999999999e-05, "mask_rcnn/accuracy": 0.9331995923664416, "mask_rcnn/false_negative": 0.06182471100588811, "mask_rcnn/false_positive": 0.07560936337703598, "roi_head/num_bg_samples": 456.0, "roi_head/num_fg_samples": 56.0, "rpn/num_neg_anchors": 237.25, "rpn/num_pos_anchors": 18.75, "time": 0.9697470364999958, "total_loss": 0.4373055868782103}
|
14 |
+
{"data_time": 0.006967480000014348, "eta_seconds": 18.328599830000485, "fast_rcnn/cls_accuracy": 0.95849609375, "fast_rcnn/false_negative": 0.15975460122699386, "fast_rcnn/fg_cls_accuracy": 0.8402453987730061, "iteration": 279, "loss_box_reg": 0.19406820833683014, "loss_cls": 0.10113400965929031, "loss_mask": 0.16126281768083572, "loss_rpn_cls": 0.010230929590761662, "loss_rpn_loc": 0.03586099483072758, "lr": 6.993025000000002e-05, "mask_rcnn/accuracy": 0.9344176832287108, "mask_rcnn/false_negative": 0.05820550465518141, "mask_rcnn/false_positive": 0.07525972862418362, "roi_head/num_bg_samples": 439.25, "roi_head/num_fg_samples": 72.75, "rpn/num_neg_anchors": 232.25, "rpn/num_pos_anchors": 23.75, "time": 0.9761503915000276, "total_loss": 0.49223250965587795}
|
15 |
+
{"data_time": 0.006742446499970356, "eta_seconds": 0.0, "fast_rcnn/cls_accuracy": 0.96240234375, "fast_rcnn/false_negative": 0.14442586399108137, "fast_rcnn/fg_cls_accuracy": 0.8555741360089186, "iteration": 299, "loss_box_reg": 0.177964448928833, "loss_cls": 0.08662557601928711, "loss_mask": 0.16527117043733597, "loss_rpn_cls": 0.00657613156363368, "loss_rpn_loc": 0.02130951825529337, "lr": 7.492525e-05, "mask_rcnn/accuracy": 0.9326858258393901, "mask_rcnn/false_negative": 0.05731613109281186, "mask_rcnn/false_positive": 0.07353323320056379, "roi_head/num_bg_samples": 439.5, "roi_head/num_fg_samples": 72.5, "rpn/num_neg_anchors": 238.75, "rpn/num_pos_anchors": 17.25, "time": 0.9941317265000293, "total_loss": 0.467316235328326}
|
model_final.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:00d22a9f036ec1348f75c186c06bbe6ad0b450fd4613f24f61bcd531426ccdd1
|
3 |
+
size 351071593
|