mgiardinetti commited on
Commit
fe81955
·
verified ·
1 Parent(s): 5e85e2a

Upload 9 files

Browse files
config.json ADDED
@@ -0,0 +1,325 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ CUDNN_BENCHMARK: false
2
+ DATALOADER:
3
+ ASPECT_RATIO_GROUPING: true
4
+ FILTER_EMPTY_ANNOTATIONS: true
5
+ NUM_WORKERS: 4
6
+ REPEAT_THRESHOLD: 0.0
7
+ SAMPLER_TRAIN: TrainingSampler
8
+ DATASETS:
9
+ PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
10
+ PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
11
+ PROPOSAL_FILES_TEST: []
12
+ PROPOSAL_FILES_TRAIN: []
13
+ TEST:
14
+ - modele-val
15
+ TRAIN:
16
+ - modele-train
17
+ GLOBAL:
18
+ HACK: 1.0
19
+ INPUT:
20
+ CROP:
21
+ ENABLED: false
22
+ SIZE:
23
+ - 0.9
24
+ - 0.9
25
+ TYPE: relative_range
26
+ FORMAT: BGR
27
+ MASK_FORMAT: polygon
28
+ MAX_SIZE_TEST: 1333
29
+ MAX_SIZE_TRAIN: 1333
30
+ MIN_SIZE_TEST: 800
31
+ MIN_SIZE_TRAIN:
32
+ - 640
33
+ - 672
34
+ - 704
35
+ - 736
36
+ - 768
37
+ - 800
38
+ MIN_SIZE_TRAIN_SAMPLING: choice
39
+ RANDOM_FLIP: horizontal
40
+ MODEL:
41
+ ANCHOR_GENERATOR:
42
+ ANGLES:
43
+ - - -90
44
+ - 0
45
+ - 90
46
+ ASPECT_RATIOS:
47
+ - - 0.5
48
+ - 1.0
49
+ - 2.0
50
+ NAME: DefaultAnchorGenerator
51
+ OFFSET: 0.0
52
+ SIZES:
53
+ - - 32
54
+ - - 64
55
+ - - 128
56
+ - - 256
57
+ - - 512
58
+ BACKBONE:
59
+ FREEZE_AT: 2
60
+ NAME: build_resnet_fpn_backbone
61
+ DEVICE: cuda
62
+ FPN:
63
+ FUSE_TYPE: sum
64
+ IN_FEATURES:
65
+ - res2
66
+ - res3
67
+ - res4
68
+ - res5
69
+ NORM: ''
70
+ OUT_CHANNELS: 256
71
+ KEYPOINT_ON: false
72
+ LOAD_PROPOSALS: false
73
+ MASK_ON: true
74
+ META_ARCHITECTURE: GeneralizedRCNN
75
+ PANOPTIC_FPN:
76
+ COMBINE:
77
+ ENABLED: true
78
+ INSTANCES_CONFIDENCE_THRESH: 0.5
79
+ OVERLAP_THRESH: 0.5
80
+ STUFF_AREA_LIMIT: 4096
81
+ INSTANCE_LOSS_WEIGHT: 1.0
82
+ PIXEL_MEAN:
83
+ - 103.53
84
+ - 116.28
85
+ - 123.675
86
+ PIXEL_STD:
87
+ - 1.0
88
+ - 1.0
89
+ - 1.0
90
+ PROPOSAL_GENERATOR:
91
+ MIN_SIZE: 0
92
+ NAME: RPN
93
+ RESNETS:
94
+ DEFORM_MODULATED: false
95
+ DEFORM_NUM_GROUPS: 1
96
+ DEFORM_ON_PER_STAGE:
97
+ - false
98
+ - false
99
+ - false
100
+ - false
101
+ DEPTH: 50
102
+ NORM: FrozenBN
103
+ NUM_GROUPS: 1
104
+ OUT_FEATURES:
105
+ - res2
106
+ - res3
107
+ - res4
108
+ - res5
109
+ RES2_OUT_CHANNELS: 256
110
+ RES5_DILATION: 1
111
+ STEM_OUT_CHANNELS: 64
112
+ STRIDE_IN_1X1: true
113
+ WIDTH_PER_GROUP: 64
114
+ RETINANET:
115
+ BBOX_REG_LOSS_TYPE: smooth_l1
116
+ BBOX_REG_WEIGHTS:
117
+ - 1.0
118
+ - 1.0
119
+ - 1.0
120
+ - 1.0
121
+ FOCAL_LOSS_ALPHA: 0.25
122
+ FOCAL_LOSS_GAMMA: 2.0
123
+ IN_FEATURES:
124
+ - p3
125
+ - p4
126
+ - p5
127
+ - p6
128
+ - p7
129
+ IOU_LABELS:
130
+ - 0
131
+ - -1
132
+ - 1
133
+ IOU_THRESHOLDS:
134
+ - 0.4
135
+ - 0.5
136
+ NMS_THRESH_TEST: 0.5
137
+ NORM: ''
138
+ NUM_CLASSES: 80
139
+ NUM_CONVS: 4
140
+ PRIOR_PROB: 0.01
141
+ SCORE_THRESH_TEST: 0.05
142
+ SMOOTH_L1_LOSS_BETA: 0.1
143
+ TOPK_CANDIDATES_TEST: 1000
144
+ ROI_BOX_CASCADE_HEAD:
145
+ BBOX_REG_WEIGHTS:
146
+ - - 10.0
147
+ - 10.0
148
+ - 5.0
149
+ - 5.0
150
+ - - 20.0
151
+ - 20.0
152
+ - 10.0
153
+ - 10.0
154
+ - - 30.0
155
+ - 30.0
156
+ - 15.0
157
+ - 15.0
158
+ IOUS:
159
+ - 0.5
160
+ - 0.6
161
+ - 0.7
162
+ ROI_BOX_HEAD:
163
+ BBOX_REG_LOSS_TYPE: smooth_l1
164
+ BBOX_REG_LOSS_WEIGHT: 1.0
165
+ BBOX_REG_WEIGHTS:
166
+ - 10.0
167
+ - 10.0
168
+ - 5.0
169
+ - 5.0
170
+ CLS_AGNOSTIC_BBOX_REG: false
171
+ CONV_DIM: 256
172
+ FC_DIM: 1024
173
+ NAME: FastRCNNConvFCHead
174
+ NORM: ''
175
+ NUM_CONV: 0
176
+ NUM_FC: 2
177
+ POOLER_RESOLUTION: 7
178
+ POOLER_SAMPLING_RATIO: 0
179
+ POOLER_TYPE: ROIAlignV2
180
+ SMOOTH_L1_BETA: 0.0
181
+ TRAIN_ON_PRED_BOXES: false
182
+ ROI_HEADS:
183
+ BATCH_SIZE_PER_IMAGE: 512
184
+ IN_FEATURES:
185
+ - p2
186
+ - p3
187
+ - p4
188
+ - p5
189
+ IOU_LABELS:
190
+ - 0
191
+ - 1
192
+ IOU_THRESHOLDS:
193
+ - 0.5
194
+ NAME: StandardROIHeads
195
+ NMS_THRESH_TEST: 0.5
196
+ NUM_CLASSES: 2
197
+ POSITIVE_FRACTION: 0.25
198
+ PROPOSAL_APPEND_GT: true
199
+ SCORE_THRESH_TEST: 0.05
200
+ ROI_KEYPOINT_HEAD:
201
+ CONV_DIMS:
202
+ - 512
203
+ - 512
204
+ - 512
205
+ - 512
206
+ - 512
207
+ - 512
208
+ - 512
209
+ - 512
210
+ LOSS_WEIGHT: 1.0
211
+ MIN_KEYPOINTS_PER_IMAGE: 1
212
+ NAME: KRCNNConvDeconvUpsampleHead
213
+ NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true
214
+ NUM_KEYPOINTS: 17
215
+ POOLER_RESOLUTION: 14
216
+ POOLER_SAMPLING_RATIO: 0
217
+ POOLER_TYPE: ROIAlignV2
218
+ ROI_MASK_HEAD:
219
+ CLS_AGNOSTIC_MASK: false
220
+ CONV_DIM: 256
221
+ NAME: MaskRCNNConvUpsampleHead
222
+ NORM: ''
223
+ NUM_CONV: 4
224
+ POOLER_RESOLUTION: 14
225
+ POOLER_SAMPLING_RATIO: 0
226
+ POOLER_TYPE: ROIAlignV2
227
+ RPN:
228
+ BATCH_SIZE_PER_IMAGE: 256
229
+ BBOX_REG_LOSS_TYPE: smooth_l1
230
+ BBOX_REG_LOSS_WEIGHT: 1.0
231
+ BBOX_REG_WEIGHTS:
232
+ - 1.0
233
+ - 1.0
234
+ - 1.0
235
+ - 1.0
236
+ BOUNDARY_THRESH: -1
237
+ HEAD_NAME: StandardRPNHead
238
+ IN_FEATURES:
239
+ - p2
240
+ - p3
241
+ - p4
242
+ - p5
243
+ - p6
244
+ IOU_LABELS:
245
+ - 0
246
+ - -1
247
+ - 1
248
+ IOU_THRESHOLDS:
249
+ - 0.3
250
+ - 0.7
251
+ LOSS_WEIGHT: 1.0
252
+ NMS_THRESH: 0.7
253
+ POSITIVE_FRACTION: 0.5
254
+ POST_NMS_TOPK_TEST: 1000
255
+ POST_NMS_TOPK_TRAIN: 1000
256
+ PRE_NMS_TOPK_TEST: 1000
257
+ PRE_NMS_TOPK_TRAIN: 2000
258
+ SMOOTH_L1_BETA: 0.0
259
+ SEM_SEG_HEAD:
260
+ COMMON_STRIDE: 4
261
+ CONVS_DIM: 128
262
+ IGNORE_VALUE: 255
263
+ IN_FEATURES:
264
+ - p2
265
+ - p3
266
+ - p4
267
+ - p5
268
+ LOSS_WEIGHT: 1.0
269
+ NAME: SemSegFPNHead
270
+ NORM: GN
271
+ NUM_CLASSES: 54
272
+ WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/model_final.pth
273
+ OUTPUT_DIR: /content/drive/MyDrive/layoutparser/modele
274
+ SEED: -1
275
+ SOLVER:
276
+ AMP:
277
+ ENABLED: false
278
+ BASE_LR: 0.00025
279
+ BIAS_LR_FACTOR: 1.0
280
+ CHECKPOINT_PERIOD: 50
281
+ CLIP_GRADIENTS:
282
+ CLIP_TYPE: value
283
+ CLIP_VALUE: 1.0
284
+ ENABLED: false
285
+ NORM_TYPE: 2.0
286
+ GAMMA: 0.1
287
+ IMS_PER_BATCH: 2
288
+ LR_SCHEDULER_NAME: WarmupMultiStepLR
289
+ MAX_ITER: 300
290
+ MOMENTUM: 0.9
291
+ NESTEROV: false
292
+ REFERENCE_WORLD_SIZE: 0
293
+ STEPS:
294
+ - 210000
295
+ - 250000
296
+ WARMUP_FACTOR: 0.001
297
+ WARMUP_ITERS: 1000
298
+ WARMUP_METHOD: linear
299
+ WEIGHT_DECAY: 0.0001
300
+ WEIGHT_DECAY_BIAS: 0.0001
301
+ WEIGHT_DECAY_NORM: 0.0
302
+ TEST:
303
+ AUG:
304
+ ENABLED: false
305
+ FLIP: true
306
+ MAX_SIZE: 4000
307
+ MIN_SIZES:
308
+ - 400
309
+ - 500
310
+ - 600
311
+ - 700
312
+ - 800
313
+ - 900
314
+ - 1000
315
+ - 1100
316
+ - 1200
317
+ DETECTIONS_PER_IMAGE: 100
318
+ EVAL_PERIOD: 0
319
+ EXPECTED_RESULTS: []
320
+ KEYPOINT_OKS_SIGMAS: []
321
+ PRECISE_BN:
322
+ ENABLED: false
323
+ NUM_ITER: 200
324
+ VERSION: 2
325
+ VIS_PERIOD: 0
config.yaml ADDED
@@ -0,0 +1,325 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ CUDNN_BENCHMARK: false
2
+ DATALOADER:
3
+ ASPECT_RATIO_GROUPING: true
4
+ FILTER_EMPTY_ANNOTATIONS: true
5
+ NUM_WORKERS: 4
6
+ REPEAT_THRESHOLD: 0.0
7
+ SAMPLER_TRAIN: TrainingSampler
8
+ DATASETS:
9
+ PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
10
+ PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
11
+ PROPOSAL_FILES_TEST: []
12
+ PROPOSAL_FILES_TRAIN: []
13
+ TEST:
14
+ - modele-val
15
+ TRAIN:
16
+ - modele-train
17
+ GLOBAL:
18
+ HACK: 1.0
19
+ INPUT:
20
+ CROP:
21
+ ENABLED: false
22
+ SIZE:
23
+ - 0.9
24
+ - 0.9
25
+ TYPE: relative_range
26
+ FORMAT: BGR
27
+ MASK_FORMAT: polygon
28
+ MAX_SIZE_TEST: 1333
29
+ MAX_SIZE_TRAIN: 1333
30
+ MIN_SIZE_TEST: 800
31
+ MIN_SIZE_TRAIN:
32
+ - 640
33
+ - 672
34
+ - 704
35
+ - 736
36
+ - 768
37
+ - 800
38
+ MIN_SIZE_TRAIN_SAMPLING: choice
39
+ RANDOM_FLIP: horizontal
40
+ MODEL:
41
+ ANCHOR_GENERATOR:
42
+ ANGLES:
43
+ - - -90
44
+ - 0
45
+ - 90
46
+ ASPECT_RATIOS:
47
+ - - 0.5
48
+ - 1.0
49
+ - 2.0
50
+ NAME: DefaultAnchorGenerator
51
+ OFFSET: 0.0
52
+ SIZES:
53
+ - - 32
54
+ - - 64
55
+ - - 128
56
+ - - 256
57
+ - - 512
58
+ BACKBONE:
59
+ FREEZE_AT: 2
60
+ NAME: build_resnet_fpn_backbone
61
+ DEVICE: cuda
62
+ FPN:
63
+ FUSE_TYPE: sum
64
+ IN_FEATURES:
65
+ - res2
66
+ - res3
67
+ - res4
68
+ - res5
69
+ NORM: ''
70
+ OUT_CHANNELS: 256
71
+ KEYPOINT_ON: false
72
+ LOAD_PROPOSALS: false
73
+ MASK_ON: true
74
+ META_ARCHITECTURE: GeneralizedRCNN
75
+ PANOPTIC_FPN:
76
+ COMBINE:
77
+ ENABLED: true
78
+ INSTANCES_CONFIDENCE_THRESH: 0.5
79
+ OVERLAP_THRESH: 0.5
80
+ STUFF_AREA_LIMIT: 4096
81
+ INSTANCE_LOSS_WEIGHT: 1.0
82
+ PIXEL_MEAN:
83
+ - 103.53
84
+ - 116.28
85
+ - 123.675
86
+ PIXEL_STD:
87
+ - 1.0
88
+ - 1.0
89
+ - 1.0
90
+ PROPOSAL_GENERATOR:
91
+ MIN_SIZE: 0
92
+ NAME: RPN
93
+ RESNETS:
94
+ DEFORM_MODULATED: false
95
+ DEFORM_NUM_GROUPS: 1
96
+ DEFORM_ON_PER_STAGE:
97
+ - false
98
+ - false
99
+ - false
100
+ - false
101
+ DEPTH: 50
102
+ NORM: FrozenBN
103
+ NUM_GROUPS: 1
104
+ OUT_FEATURES:
105
+ - res2
106
+ - res3
107
+ - res4
108
+ - res5
109
+ RES2_OUT_CHANNELS: 256
110
+ RES5_DILATION: 1
111
+ STEM_OUT_CHANNELS: 64
112
+ STRIDE_IN_1X1: true
113
+ WIDTH_PER_GROUP: 64
114
+ RETINANET:
115
+ BBOX_REG_LOSS_TYPE: smooth_l1
116
+ BBOX_REG_WEIGHTS:
117
+ - 1.0
118
+ - 1.0
119
+ - 1.0
120
+ - 1.0
121
+ FOCAL_LOSS_ALPHA: 0.25
122
+ FOCAL_LOSS_GAMMA: 2.0
123
+ IN_FEATURES:
124
+ - p3
125
+ - p4
126
+ - p5
127
+ - p6
128
+ - p7
129
+ IOU_LABELS:
130
+ - 0
131
+ - -1
132
+ - 1
133
+ IOU_THRESHOLDS:
134
+ - 0.4
135
+ - 0.5
136
+ NMS_THRESH_TEST: 0.5
137
+ NORM: ''
138
+ NUM_CLASSES: 80
139
+ NUM_CONVS: 4
140
+ PRIOR_PROB: 0.01
141
+ SCORE_THRESH_TEST: 0.05
142
+ SMOOTH_L1_LOSS_BETA: 0.1
143
+ TOPK_CANDIDATES_TEST: 1000
144
+ ROI_BOX_CASCADE_HEAD:
145
+ BBOX_REG_WEIGHTS:
146
+ - - 10.0
147
+ - 10.0
148
+ - 5.0
149
+ - 5.0
150
+ - - 20.0
151
+ - 20.0
152
+ - 10.0
153
+ - 10.0
154
+ - - 30.0
155
+ - 30.0
156
+ - 15.0
157
+ - 15.0
158
+ IOUS:
159
+ - 0.5
160
+ - 0.6
161
+ - 0.7
162
+ ROI_BOX_HEAD:
163
+ BBOX_REG_LOSS_TYPE: smooth_l1
164
+ BBOX_REG_LOSS_WEIGHT: 1.0
165
+ BBOX_REG_WEIGHTS:
166
+ - 10.0
167
+ - 10.0
168
+ - 5.0
169
+ - 5.0
170
+ CLS_AGNOSTIC_BBOX_REG: false
171
+ CONV_DIM: 256
172
+ FC_DIM: 1024
173
+ NAME: FastRCNNConvFCHead
174
+ NORM: ''
175
+ NUM_CONV: 0
176
+ NUM_FC: 2
177
+ POOLER_RESOLUTION: 7
178
+ POOLER_SAMPLING_RATIO: 0
179
+ POOLER_TYPE: ROIAlignV2
180
+ SMOOTH_L1_BETA: 0.0
181
+ TRAIN_ON_PRED_BOXES: false
182
+ ROI_HEADS:
183
+ BATCH_SIZE_PER_IMAGE: 512
184
+ IN_FEATURES:
185
+ - p2
186
+ - p3
187
+ - p4
188
+ - p5
189
+ IOU_LABELS:
190
+ - 0
191
+ - 1
192
+ IOU_THRESHOLDS:
193
+ - 0.5
194
+ NAME: StandardROIHeads
195
+ NMS_THRESH_TEST: 0.5
196
+ NUM_CLASSES: 2
197
+ POSITIVE_FRACTION: 0.25
198
+ PROPOSAL_APPEND_GT: true
199
+ SCORE_THRESH_TEST: 0.05
200
+ ROI_KEYPOINT_HEAD:
201
+ CONV_DIMS:
202
+ - 512
203
+ - 512
204
+ - 512
205
+ - 512
206
+ - 512
207
+ - 512
208
+ - 512
209
+ - 512
210
+ LOSS_WEIGHT: 1.0
211
+ MIN_KEYPOINTS_PER_IMAGE: 1
212
+ NAME: KRCNNConvDeconvUpsampleHead
213
+ NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true
214
+ NUM_KEYPOINTS: 17
215
+ POOLER_RESOLUTION: 14
216
+ POOLER_SAMPLING_RATIO: 0
217
+ POOLER_TYPE: ROIAlignV2
218
+ ROI_MASK_HEAD:
219
+ CLS_AGNOSTIC_MASK: false
220
+ CONV_DIM: 256
221
+ NAME: MaskRCNNConvUpsampleHead
222
+ NORM: ''
223
+ NUM_CONV: 4
224
+ POOLER_RESOLUTION: 14
225
+ POOLER_SAMPLING_RATIO: 0
226
+ POOLER_TYPE: ROIAlignV2
227
+ RPN:
228
+ BATCH_SIZE_PER_IMAGE: 256
229
+ BBOX_REG_LOSS_TYPE: smooth_l1
230
+ BBOX_REG_LOSS_WEIGHT: 1.0
231
+ BBOX_REG_WEIGHTS:
232
+ - 1.0
233
+ - 1.0
234
+ - 1.0
235
+ - 1.0
236
+ BOUNDARY_THRESH: -1
237
+ HEAD_NAME: StandardRPNHead
238
+ IN_FEATURES:
239
+ - p2
240
+ - p3
241
+ - p4
242
+ - p5
243
+ - p6
244
+ IOU_LABELS:
245
+ - 0
246
+ - -1
247
+ - 1
248
+ IOU_THRESHOLDS:
249
+ - 0.3
250
+ - 0.7
251
+ LOSS_WEIGHT: 1.0
252
+ NMS_THRESH: 0.7
253
+ POSITIVE_FRACTION: 0.5
254
+ POST_NMS_TOPK_TEST: 1000
255
+ POST_NMS_TOPK_TRAIN: 1000
256
+ PRE_NMS_TOPK_TEST: 1000
257
+ PRE_NMS_TOPK_TRAIN: 2000
258
+ SMOOTH_L1_BETA: 0.0
259
+ SEM_SEG_HEAD:
260
+ COMMON_STRIDE: 4
261
+ CONVS_DIM: 128
262
+ IGNORE_VALUE: 255
263
+ IN_FEATURES:
264
+ - p2
265
+ - p3
266
+ - p4
267
+ - p5
268
+ LOSS_WEIGHT: 1.0
269
+ NAME: SemSegFPNHead
270
+ NORM: GN
271
+ NUM_CLASSES: 54
272
+ WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/model_final.pth
273
+ OUTPUT_DIR: /content/drive/MyDrive/layoutparser/modele
274
+ SEED: -1
275
+ SOLVER:
276
+ AMP:
277
+ ENABLED: false
278
+ BASE_LR: 0.00025
279
+ BIAS_LR_FACTOR: 1.0
280
+ CHECKPOINT_PERIOD: 50
281
+ CLIP_GRADIENTS:
282
+ CLIP_TYPE: value
283
+ CLIP_VALUE: 1.0
284
+ ENABLED: false
285
+ NORM_TYPE: 2.0
286
+ GAMMA: 0.1
287
+ IMS_PER_BATCH: 2
288
+ LR_SCHEDULER_NAME: WarmupMultiStepLR
289
+ MAX_ITER: 300
290
+ MOMENTUM: 0.9
291
+ NESTEROV: false
292
+ REFERENCE_WORLD_SIZE: 0
293
+ STEPS:
294
+ - 210000
295
+ - 250000
296
+ WARMUP_FACTOR: 0.001
297
+ WARMUP_ITERS: 1000
298
+ WARMUP_METHOD: linear
299
+ WEIGHT_DECAY: 0.0001
300
+ WEIGHT_DECAY_BIAS: 0.0001
301
+ WEIGHT_DECAY_NORM: 0.0
302
+ TEST:
303
+ AUG:
304
+ ENABLED: false
305
+ FLIP: true
306
+ MAX_SIZE: 4000
307
+ MIN_SIZES:
308
+ - 400
309
+ - 500
310
+ - 600
311
+ - 700
312
+ - 800
313
+ - 900
314
+ - 1000
315
+ - 1100
316
+ - 1200
317
+ DETECTIONS_PER_IMAGE: 100
318
+ EVAL_PERIOD: 0
319
+ EXPECTED_RESULTS: []
320
+ KEYPOINT_OKS_SIGMAS: []
321
+ PRECISE_BN:
322
+ ENABLED: false
323
+ NUM_ITER: 200
324
+ VERSION: 2
325
+ VIS_PERIOD: 0
events.out.tfevents.1681910385.906c2a3c48ac.2206.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aad8ab0e1340cacf4edf029d2e904bb03844ee8ed9408a6e7e1c85ba8f7695a9
3
+ size 88
events.out.tfevents.1681910424.906c2a3c48ac.2416.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:622f1f3a134b80b2168c0d4fcb263babc44e4e1b240f593fbca1185a07cb1e95
3
+ size 88
events.out.tfevents.1681910486.906c2a3c48ac.2698.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c7c58b7aad0abc3cc2aa8b7b92fbc2f2bc2af1c8b8a29c4a06378c3585025dc
3
+ size 16318
last_checkpoint ADDED
@@ -0,0 +1 @@
 
 
1
+ model_final.pth
log.txt ADDED
@@ -0,0 +1,2758 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [04/19 13:19:35] detectron2 INFO: Rank of current process: 0. World size: 1
2
+ [04/19 13:19:36] detectron2 INFO: Environment info:
3
+ ---------------------- ----------------------------------------------------------------
4
+ sys.platform linux
5
+ Python 3.9.16 (main, Dec 7 2022, 01:11:51) [GCC 9.4.0]
6
+ numpy 1.22.4
7
+ detectron2 0.4 @/usr/local/lib/python3.9/dist-packages/detectron2
8
+ Compiler GCC 9.4
9
+ CUDA compiler CUDA 11.8
10
+ detectron2 arch flags 7.5
11
+ DETECTRON2_ENV_MODULE <not set>
12
+ PyTorch 2.0.0+cu118 @/usr/local/lib/python3.9/dist-packages/torch
13
+ PyTorch debug build False
14
+ GPU available True
15
+ GPU 0 Tesla T4 (arch=7.5)
16
+ CUDA_HOME /usr/local/cuda
17
+ Pillow 9.5.0
18
+ torchvision 0.15.1+cu118 @/usr/local/lib/python3.9/dist-packages/torchvision
19
+ torchvision arch flags 3.5, 5.0, 6.0, 7.0, 7.5, 8.0, 8.6
20
+ fvcore 0.1.3.post20210317
21
+ cv2 4.7.0
22
+ ---------------------- ----------------------------------------------------------------
23
+ PyTorch built with:
24
+ - GCC 9.3
25
+ - C++ Version: 201703
26
+ - Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
27
+ - Intel(R) MKL-DNN v2.7.3 (Git Hash 6dbeffbae1f23cbbeae17adb7b5b13f1f37c080e)
28
+ - OpenMP 201511 (a.k.a. OpenMP 4.5)
29
+ - LAPACK is enabled (usually provided by MKL)
30
+ - NNPACK is enabled
31
+ - CPU capability usage: AVX2
32
+ - CUDA Runtime 11.8
33
+ - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
34
+ - CuDNN 8.7
35
+ - Magma 2.6.1
36
+ - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.0.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
37
+
38
+ [04/19 13:19:36] detectron2 INFO: Command line arguments: Namespace(config_file='/content/layout-model-training/config_LayoutParser_PrimaDataset.yaml', resume=False, eval_only=False, num_gpus=1, num_machines=1, machine_rank=0, dist_url='tcp://127.0.0.1:49152', opts=['OUTPUT_DIR', '/content/drive/MyDrive/layoutparser/modele', 'SOLVER.IMS_PER_BATCH', '2'], dataset_name='modele', json_annotation_train='/content/drive/MyDrive/layoutparser/dataset6/train/via_project_19Apr2023_15h0m_coco.json', image_path_train='/content/drive/MyDrive/layoutparser/dataset6/train', json_annotation_val='/content/drive/MyDrive/layoutparser/dataset6/val/via_project_19Apr2023_15h9m_coco.json', image_path_val='/content/drive/MyDrive/layoutparser/dataset6/val')
39
+ [04/19 13:19:36] detectron2 INFO: Contents of args.config_file=/content/layout-model-training/config_LayoutParser_PrimaDataset.yaml:
40
+ CUDNN_BENCHMARK: false
41
+ DATALOADER:
42
+ ASPECT_RATIO_GROUPING: true
43
+ FILTER_EMPTY_ANNOTATIONS: true
44
+ NUM_WORKERS: 4
45
+ REPEAT_THRESHOLD: 0.0
46
+ SAMPLER_TRAIN: TrainingSampler
47
+ DATASETS:
48
+ PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
49
+ PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
50
+ PROPOSAL_FILES_TEST: []
51
+ PROPOSAL_FILES_TRAIN: []
52
+ TEST:
53
+ - prima-layout-val
54
+ TRAIN:
55
+ - prima-layout-train
56
+ GLOBAL:
57
+ HACK: 1.0
58
+ INPUT:
59
+ CROP:
60
+ ENABLED: false
61
+ SIZE:
62
+ - 0.9
63
+ - 0.9
64
+ TYPE: relative_range
65
+ FORMAT: BGR
66
+ MASK_FORMAT: polygon
67
+ MAX_SIZE_TEST: 1333
68
+ MAX_SIZE_TRAIN: 1333
69
+ MIN_SIZE_TEST: 800
70
+ MIN_SIZE_TRAIN:
71
+ - 640
72
+ - 672
73
+ - 704
74
+ - 736
75
+ - 768
76
+ - 800
77
+ MIN_SIZE_TRAIN_SAMPLING: choice
78
+ MODEL:
79
+ ANCHOR_GENERATOR:
80
+ ANGLES:
81
+ - - -90
82
+ - 0
83
+ - 90
84
+ ASPECT_RATIOS:
85
+ - - 0.5
86
+ - 1.0
87
+ - 2.0
88
+ NAME: DefaultAnchorGenerator
89
+ OFFSET: 0.0
90
+ SIZES:
91
+ - - 32
92
+ - - 64
93
+ - - 128
94
+ - - 256
95
+ - - 512
96
+ BACKBONE:
97
+ FREEZE_AT: 2
98
+ NAME: build_resnet_fpn_backbone
99
+ DEVICE: cuda
100
+ FPN:
101
+ FUSE_TYPE: sum
102
+ IN_FEATURES:
103
+ - res2
104
+ - res3
105
+ - res4
106
+ - res5
107
+ NORM: ''
108
+ OUT_CHANNELS: 256
109
+ KEYPOINT_ON: false
110
+ LOAD_PROPOSALS: false
111
+ MASK_ON: true
112
+ META_ARCHITECTURE: GeneralizedRCNN
113
+ PANOPTIC_FPN:
114
+ COMBINE:
115
+ ENABLED: true
116
+ INSTANCES_CONFIDENCE_THRESH: 0.5
117
+ OVERLAP_THRESH: 0.5
118
+ STUFF_AREA_LIMIT: 4096
119
+ INSTANCE_LOSS_WEIGHT: 1.0
120
+ PIXEL_MEAN:
121
+ - 103.53
122
+ - 116.28
123
+ - 123.675
124
+ PIXEL_STD:
125
+ - 1.0
126
+ - 1.0
127
+ - 1.0
128
+ PROPOSAL_GENERATOR:
129
+ MIN_SIZE: 0
130
+ NAME: RPN
131
+ RESNETS:
132
+ DEFORM_MODULATED: false
133
+ DEFORM_NUM_GROUPS: 1
134
+ DEFORM_ON_PER_STAGE:
135
+ - false
136
+ - false
137
+ - false
138
+ - false
139
+ DEPTH: 50
140
+ NORM: FrozenBN
141
+ NUM_GROUPS: 1
142
+ OUT_FEATURES:
143
+ - res2
144
+ - res3
145
+ - res4
146
+ - res5
147
+ RES2_OUT_CHANNELS: 256
148
+ RES5_DILATION: 1
149
+ STEM_OUT_CHANNELS: 64
150
+ STRIDE_IN_1X1: true
151
+ WIDTH_PER_GROUP: 64
152
+ RETINANET:
153
+ BBOX_REG_WEIGHTS:
154
+ - 1.0
155
+ - 1.0
156
+ - 1.0
157
+ - 1.0
158
+ FOCAL_LOSS_ALPHA: 0.25
159
+ FOCAL_LOSS_GAMMA: 2.0
160
+ IN_FEATURES:
161
+ - p3
162
+ - p4
163
+ - p5
164
+ - p6
165
+ - p7
166
+ IOU_LABELS:
167
+ - 0
168
+ - -1
169
+ - 1
170
+ IOU_THRESHOLDS:
171
+ - 0.4
172
+ - 0.5
173
+ NMS_THRESH_TEST: 0.5
174
+ NUM_CLASSES: 80
175
+ NUM_CONVS: 4
176
+ PRIOR_PROB: 0.01
177
+ SCORE_THRESH_TEST: 0.05
178
+ SMOOTH_L1_LOSS_BETA: 0.1
179
+ TOPK_CANDIDATES_TEST: 1000
180
+ ROI_BOX_CASCADE_HEAD:
181
+ BBOX_REG_WEIGHTS:
182
+ - - 10.0
183
+ - 10.0
184
+ - 5.0
185
+ - 5.0
186
+ - - 20.0
187
+ - 20.0
188
+ - 10.0
189
+ - 10.0
190
+ - - 30.0
191
+ - 30.0
192
+ - 15.0
193
+ - 15.0
194
+ IOUS:
195
+ - 0.5
196
+ - 0.6
197
+ - 0.7
198
+ ROI_BOX_HEAD:
199
+ BBOX_REG_WEIGHTS:
200
+ - 10.0
201
+ - 10.0
202
+ - 5.0
203
+ - 5.0
204
+ CLS_AGNOSTIC_BBOX_REG: false
205
+ CONV_DIM: 256
206
+ FC_DIM: 1024
207
+ NAME: FastRCNNConvFCHead
208
+ NORM: ''
209
+ NUM_CONV: 0
210
+ NUM_FC: 2
211
+ POOLER_RESOLUTION: 7
212
+ POOLER_SAMPLING_RATIO: 0
213
+ POOLER_TYPE: ROIAlignV2
214
+ SMOOTH_L1_BETA: 0.0
215
+ TRAIN_ON_PRED_BOXES: false
216
+ ROI_HEADS:
217
+ BATCH_SIZE_PER_IMAGE: 512
218
+ IN_FEATURES:
219
+ - p2
220
+ - p3
221
+ - p4
222
+ - p5
223
+ IOU_LABELS:
224
+ - 0
225
+ - 1
226
+ IOU_THRESHOLDS:
227
+ - 0.5
228
+ NAME: StandardROIHeads
229
+ NMS_THRESH_TEST: 0.5
230
+ NUM_CLASSES: 7
231
+ POSITIVE_FRACTION: 0.25
232
+ PROPOSAL_APPEND_GT: true
233
+ SCORE_THRESH_TEST: 0.05
234
+ ROI_KEYPOINT_HEAD:
235
+ CONV_DIMS:
236
+ - 512
237
+ - 512
238
+ - 512
239
+ - 512
240
+ - 512
241
+ - 512
242
+ - 512
243
+ - 512
244
+ LOSS_WEIGHT: 1.0
245
+ MIN_KEYPOINTS_PER_IMAGE: 1
246
+ NAME: KRCNNConvDeconvUpsampleHead
247
+ NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true
248
+ NUM_KEYPOINTS: 17
249
+ POOLER_RESOLUTION: 14
250
+ POOLER_SAMPLING_RATIO: 0
251
+ POOLER_TYPE: ROIAlignV2
252
+ ROI_MASK_HEAD:
253
+ CLS_AGNOSTIC_MASK: false
254
+ CONV_DIM: 256
255
+ NAME: MaskRCNNConvUpsampleHead
256
+ NORM: ''
257
+ NUM_CONV: 4
258
+ POOLER_RESOLUTION: 14
259
+ POOLER_SAMPLING_RATIO: 0
260
+ POOLER_TYPE: ROIAlignV2
261
+ RPN:
262
+ BATCH_SIZE_PER_IMAGE: 256
263
+ BBOX_REG_WEIGHTS:
264
+ - 1.0
265
+ - 1.0
266
+ - 1.0
267
+ - 1.0
268
+ BOUNDARY_THRESH: -1
269
+ HEAD_NAME: StandardRPNHead
270
+ IN_FEATURES:
271
+ - p2
272
+ - p3
273
+ - p4
274
+ - p5
275
+ - p6
276
+ IOU_LABELS:
277
+ - 0
278
+ - -1
279
+ - 1
280
+ IOU_THRESHOLDS:
281
+ - 0.3
282
+ - 0.7
283
+ LOSS_WEIGHT: 1.0
284
+ NMS_THRESH: 0.7
285
+ POSITIVE_FRACTION: 0.5
286
+ POST_NMS_TOPK_TEST: 1000
287
+ POST_NMS_TOPK_TRAIN: 1000
288
+ PRE_NMS_TOPK_TEST: 1000
289
+ PRE_NMS_TOPK_TRAIN: 2000
290
+ SMOOTH_L1_BETA: 0.0
291
+ SEM_SEG_HEAD:
292
+ COMMON_STRIDE: 4
293
+ CONVS_DIM: 128
294
+ IGNORE_VALUE: 255
295
+ IN_FEATURES:
296
+ - p2
297
+ - p3
298
+ - p4
299
+ - p5
300
+ LOSS_WEIGHT: 1.0
301
+ NAME: SemSegFPNHead
302
+ NORM: GN
303
+ NUM_CLASSES: 54
304
+ WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/
305
+ OUTPUT_DIR: ../outputs/prima/mask_rcnn_R_50_FPN_3x/
306
+ SEED: -1
307
+ SOLVER:
308
+ BASE_LR: 0.00025
309
+ BIAS_LR_FACTOR: 1.0
310
+ CHECKPOINT_PERIOD: 50
311
+ CLIP_GRADIENTS:
312
+ CLIP_TYPE: value
313
+ CLIP_VALUE: 1.0
314
+ ENABLED: false
315
+ NORM_TYPE: 2.0
316
+ GAMMA: 0.1
317
+ IMS_PER_BATCH: 2
318
+ LR_SCHEDULER_NAME: WarmupMultiStepLR
319
+ MAX_ITER: 300
320
+ MOMENTUM: 0.9
321
+ NESTEROV: false
322
+ STEPS:
323
+ - 210000
324
+ - 250000
325
+ WARMUP_FACTOR: 0.001
326
+ WARMUP_ITERS: 1000
327
+ WARMUP_METHOD: linear
328
+ WEIGHT_DECAY: 0.0001
329
+ WEIGHT_DECAY_BIAS: 0.0001
330
+ WEIGHT_DECAY_NORM: 0.0
331
+ TEST:
332
+ AUG:
333
+ ENABLED: false
334
+ FLIP: true
335
+ MAX_SIZE: 4000
336
+ MIN_SIZES:
337
+ - 400
338
+ - 500
339
+ - 600
340
+ - 700
341
+ - 800
342
+ - 900
343
+ - 1000
344
+ - 1100
345
+ - 1200
346
+ DETECTIONS_PER_IMAGE: 100
347
+ EVAL_PERIOD: 0
348
+ EXPECTED_RESULTS: []
349
+ KEYPOINT_OKS_SIGMAS: []
350
+ PRECISE_BN:
351
+ ENABLED: false
352
+ NUM_ITER: 200
353
+ VERSION: 2
354
+ VIS_PERIOD: 0
355
+
356
+ [04/19 13:19:36] detectron2 INFO: Running with full config:
357
+ CUDNN_BENCHMARK: False
358
+ DATALOADER:
359
+ ASPECT_RATIO_GROUPING: True
360
+ FILTER_EMPTY_ANNOTATIONS: True
361
+ NUM_WORKERS: 4
362
+ REPEAT_THRESHOLD: 0.0
363
+ SAMPLER_TRAIN: TrainingSampler
364
+ DATASETS:
365
+ PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
366
+ PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
367
+ PROPOSAL_FILES_TEST: ()
368
+ PROPOSAL_FILES_TRAIN: ()
369
+ TEST: ('modele-val',)
370
+ TRAIN: ('modele-train',)
371
+ GLOBAL:
372
+ HACK: 1.0
373
+ INPUT:
374
+ CROP:
375
+ ENABLED: False
376
+ SIZE: [0.9, 0.9]
377
+ TYPE: relative_range
378
+ FORMAT: BGR
379
+ MASK_FORMAT: polygon
380
+ MAX_SIZE_TEST: 1333
381
+ MAX_SIZE_TRAIN: 1333
382
+ MIN_SIZE_TEST: 800
383
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
384
+ MIN_SIZE_TRAIN_SAMPLING: choice
385
+ RANDOM_FLIP: horizontal
386
+ MODEL:
387
+ ANCHOR_GENERATOR:
388
+ ANGLES: [[-90, 0, 90]]
389
+ ASPECT_RATIOS: [[0.5, 1.0, 2.0]]
390
+ NAME: DefaultAnchorGenerator
391
+ OFFSET: 0.0
392
+ SIZES: [[32], [64], [128], [256], [512]]
393
+ BACKBONE:
394
+ FREEZE_AT: 2
395
+ NAME: build_resnet_fpn_backbone
396
+ DEVICE: cuda
397
+ FPN:
398
+ FUSE_TYPE: sum
399
+ IN_FEATURES: ['res2', 'res3', 'res4', 'res5']
400
+ NORM:
401
+ OUT_CHANNELS: 256
402
+ KEYPOINT_ON: False
403
+ LOAD_PROPOSALS: False
404
+ MASK_ON: True
405
+ META_ARCHITECTURE: GeneralizedRCNN
406
+ PANOPTIC_FPN:
407
+ COMBINE:
408
+ ENABLED: True
409
+ INSTANCES_CONFIDENCE_THRESH: 0.5
410
+ OVERLAP_THRESH: 0.5
411
+ STUFF_AREA_LIMIT: 4096
412
+ INSTANCE_LOSS_WEIGHT: 1.0
413
+ PIXEL_MEAN: [103.53, 116.28, 123.675]
414
+ PIXEL_STD: [1.0, 1.0, 1.0]
415
+ PROPOSAL_GENERATOR:
416
+ MIN_SIZE: 0
417
+ NAME: RPN
418
+ RESNETS:
419
+ DEFORM_MODULATED: False
420
+ DEFORM_NUM_GROUPS: 1
421
+ DEFORM_ON_PER_STAGE: [False, False, False, False]
422
+ DEPTH: 50
423
+ NORM: FrozenBN
424
+ NUM_GROUPS: 1
425
+ OUT_FEATURES: ['res2', 'res3', 'res4', 'res5']
426
+ RES2_OUT_CHANNELS: 256
427
+ RES5_DILATION: 1
428
+ STEM_OUT_CHANNELS: 64
429
+ STRIDE_IN_1X1: True
430
+ WIDTH_PER_GROUP: 64
431
+ RETINANET:
432
+ BBOX_REG_LOSS_TYPE: smooth_l1
433
+ BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0)
434
+ FOCAL_LOSS_ALPHA: 0.25
435
+ FOCAL_LOSS_GAMMA: 2.0
436
+ IN_FEATURES: ['p3', 'p4', 'p5', 'p6', 'p7']
437
+ IOU_LABELS: [0, -1, 1]
438
+ IOU_THRESHOLDS: [0.4, 0.5]
439
+ NMS_THRESH_TEST: 0.5
440
+ NORM:
441
+ NUM_CLASSES: 80
442
+ NUM_CONVS: 4
443
+ PRIOR_PROB: 0.01
444
+ SCORE_THRESH_TEST: 0.05
445
+ SMOOTH_L1_LOSS_BETA: 0.1
446
+ TOPK_CANDIDATES_TEST: 1000
447
+ ROI_BOX_CASCADE_HEAD:
448
+ BBOX_REG_WEIGHTS: ([10.0, 10.0, 5.0, 5.0], [20.0, 20.0, 10.0, 10.0], [30.0, 30.0, 15.0, 15.0])
449
+ IOUS: (0.5, 0.6, 0.7)
450
+ ROI_BOX_HEAD:
451
+ BBOX_REG_LOSS_TYPE: smooth_l1
452
+ BBOX_REG_LOSS_WEIGHT: 1.0
453
+ BBOX_REG_WEIGHTS: (10.0, 10.0, 5.0, 5.0)
454
+ CLS_AGNOSTIC_BBOX_REG: False
455
+ CONV_DIM: 256
456
+ FC_DIM: 1024
457
+ NAME: FastRCNNConvFCHead
458
+ NORM:
459
+ NUM_CONV: 0
460
+ NUM_FC: 2
461
+ POOLER_RESOLUTION: 7
462
+ POOLER_SAMPLING_RATIO: 0
463
+ POOLER_TYPE: ROIAlignV2
464
+ SMOOTH_L1_BETA: 0.0
465
+ TRAIN_ON_PRED_BOXES: False
466
+ ROI_HEADS:
467
+ BATCH_SIZE_PER_IMAGE: 512
468
+ IN_FEATURES: ['p2', 'p3', 'p4', 'p5']
469
+ IOU_LABELS: [0, 1]
470
+ IOU_THRESHOLDS: [0.5]
471
+ NAME: StandardROIHeads
472
+ NMS_THRESH_TEST: 0.5
473
+ NUM_CLASSES: 2
474
+ POSITIVE_FRACTION: 0.25
475
+ PROPOSAL_APPEND_GT: True
476
+ SCORE_THRESH_TEST: 0.05
477
+ ROI_KEYPOINT_HEAD:
478
+ CONV_DIMS: (512, 512, 512, 512, 512, 512, 512, 512)
479
+ LOSS_WEIGHT: 1.0
480
+ MIN_KEYPOINTS_PER_IMAGE: 1
481
+ NAME: KRCNNConvDeconvUpsampleHead
482
+ NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: True
483
+ NUM_KEYPOINTS: 17
484
+ POOLER_RESOLUTION: 14
485
+ POOLER_SAMPLING_RATIO: 0
486
+ POOLER_TYPE: ROIAlignV2
487
+ ROI_MASK_HEAD:
488
+ CLS_AGNOSTIC_MASK: False
489
+ CONV_DIM: 256
490
+ NAME: MaskRCNNConvUpsampleHead
491
+ NORM:
492
+ NUM_CONV: 4
493
+ POOLER_RESOLUTION: 14
494
+ POOLER_SAMPLING_RATIO: 0
495
+ POOLER_TYPE: ROIAlignV2
496
+ RPN:
497
+ BATCH_SIZE_PER_IMAGE: 256
498
+ BBOX_REG_LOSS_TYPE: smooth_l1
499
+ BBOX_REG_LOSS_WEIGHT: 1.0
500
+ BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0)
501
+ BOUNDARY_THRESH: -1
502
+ HEAD_NAME: StandardRPNHead
503
+ IN_FEATURES: ['p2', 'p3', 'p4', 'p5', 'p6']
504
+ IOU_LABELS: [0, -1, 1]
505
+ IOU_THRESHOLDS: [0.3, 0.7]
506
+ LOSS_WEIGHT: 1.0
507
+ NMS_THRESH: 0.7
508
+ POSITIVE_FRACTION: 0.5
509
+ POST_NMS_TOPK_TEST: 1000
510
+ POST_NMS_TOPK_TRAIN: 1000
511
+ PRE_NMS_TOPK_TEST: 1000
512
+ PRE_NMS_TOPK_TRAIN: 2000
513
+ SMOOTH_L1_BETA: 0.0
514
+ SEM_SEG_HEAD:
515
+ COMMON_STRIDE: 4
516
+ CONVS_DIM: 128
517
+ IGNORE_VALUE: 255
518
+ IN_FEATURES: ['p2', 'p3', 'p4', 'p5']
519
+ LOSS_WEIGHT: 1.0
520
+ NAME: SemSegFPNHead
521
+ NORM: GN
522
+ NUM_CLASSES: 54
523
+ WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/
524
+ OUTPUT_DIR: /content/drive/MyDrive/layoutparser/modele
525
+ SEED: -1
526
+ SOLVER:
527
+ AMP:
528
+ ENABLED: False
529
+ BASE_LR: 0.00025
530
+ BIAS_LR_FACTOR: 1.0
531
+ CHECKPOINT_PERIOD: 50
532
+ CLIP_GRADIENTS:
533
+ CLIP_TYPE: value
534
+ CLIP_VALUE: 1.0
535
+ ENABLED: False
536
+ NORM_TYPE: 2.0
537
+ GAMMA: 0.1
538
+ IMS_PER_BATCH: 2
539
+ LR_SCHEDULER_NAME: WarmupMultiStepLR
540
+ MAX_ITER: 300
541
+ MOMENTUM: 0.9
542
+ NESTEROV: False
543
+ REFERENCE_WORLD_SIZE: 0
544
+ STEPS: (210000, 250000)
545
+ WARMUP_FACTOR: 0.001
546
+ WARMUP_ITERS: 1000
547
+ WARMUP_METHOD: linear
548
+ WEIGHT_DECAY: 0.0001
549
+ WEIGHT_DECAY_BIAS: 0.0001
550
+ WEIGHT_DECAY_NORM: 0.0
551
+ TEST:
552
+ AUG:
553
+ ENABLED: False
554
+ FLIP: True
555
+ MAX_SIZE: 4000
556
+ MIN_SIZES: (400, 500, 600, 700, 800, 900, 1000, 1100, 1200)
557
+ DETECTIONS_PER_IMAGE: 100
558
+ EVAL_PERIOD: 0
559
+ EXPECTED_RESULTS: []
560
+ KEYPOINT_OKS_SIGMAS: []
561
+ PRECISE_BN:
562
+ ENABLED: False
563
+ NUM_ITER: 200
564
+ VERSION: 2
565
+ VIS_PERIOD: 0
566
+ [04/19 13:19:36] detectron2 INFO: Full config saved to /content/drive/MyDrive/layoutparser/modele/config.yaml
567
+ [04/19 13:19:36] d2.utils.env INFO: Using a generated random seed 36661240
568
+ [04/19 13:19:43] d2.engine.defaults INFO: Model:
569
+ GeneralizedRCNN(
570
+ (backbone): FPN(
571
+ (fpn_lateral2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
572
+ (fpn_output2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
573
+ (fpn_lateral3): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
574
+ (fpn_output3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
575
+ (fpn_lateral4): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
576
+ (fpn_output4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
577
+ (fpn_lateral5): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
578
+ (fpn_output5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
579
+ (top_block): LastLevelMaxPool()
580
+ (bottom_up): ResNet(
581
+ (stem): BasicStem(
582
+ (conv1): Conv2d(
583
+ 3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False
584
+ (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
585
+ )
586
+ )
587
+ (res2): Sequential(
588
+ (0): BottleneckBlock(
589
+ (shortcut): Conv2d(
590
+ 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
591
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
592
+ )
593
+ (conv1): Conv2d(
594
+ 64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
595
+ (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
596
+ )
597
+ (conv2): Conv2d(
598
+ 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
599
+ (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
600
+ )
601
+ (conv3): Conv2d(
602
+ 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
603
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
604
+ )
605
+ )
606
+ (1): BottleneckBlock(
607
+ (conv1): Conv2d(
608
+ 256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
609
+ (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
610
+ )
611
+ (conv2): Conv2d(
612
+ 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
613
+ (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
614
+ )
615
+ (conv3): Conv2d(
616
+ 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
617
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
618
+ )
619
+ )
620
+ (2): BottleneckBlock(
621
+ (conv1): Conv2d(
622
+ 256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
623
+ (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
624
+ )
625
+ (conv2): Conv2d(
626
+ 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
627
+ (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
628
+ )
629
+ (conv3): Conv2d(
630
+ 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
631
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
632
+ )
633
+ )
634
+ )
635
+ (res3): Sequential(
636
+ (0): BottleneckBlock(
637
+ (shortcut): Conv2d(
638
+ 256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
639
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
640
+ )
641
+ (conv1): Conv2d(
642
+ 256, 128, kernel_size=(1, 1), stride=(2, 2), bias=False
643
+ (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
644
+ )
645
+ (conv2): Conv2d(
646
+ 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
647
+ (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
648
+ )
649
+ (conv3): Conv2d(
650
+ 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
651
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
652
+ )
653
+ )
654
+ (1): BottleneckBlock(
655
+ (conv1): Conv2d(
656
+ 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
657
+ (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
658
+ )
659
+ (conv2): Conv2d(
660
+ 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
661
+ (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
662
+ )
663
+ (conv3): Conv2d(
664
+ 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
665
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
666
+ )
667
+ )
668
+ (2): BottleneckBlock(
669
+ (conv1): Conv2d(
670
+ 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
671
+ (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
672
+ )
673
+ (conv2): Conv2d(
674
+ 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
675
+ (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
676
+ )
677
+ (conv3): Conv2d(
678
+ 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
679
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
680
+ )
681
+ )
682
+ (3): BottleneckBlock(
683
+ (conv1): Conv2d(
684
+ 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
685
+ (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
686
+ )
687
+ (conv2): Conv2d(
688
+ 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
689
+ (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
690
+ )
691
+ (conv3): Conv2d(
692
+ 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
693
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
694
+ )
695
+ )
696
+ )
697
+ (res4): Sequential(
698
+ (0): BottleneckBlock(
699
+ (shortcut): Conv2d(
700
+ 512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False
701
+ (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
702
+ )
703
+ (conv1): Conv2d(
704
+ 512, 256, kernel_size=(1, 1), stride=(2, 2), bias=False
705
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
706
+ )
707
+ (conv2): Conv2d(
708
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
709
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
710
+ )
711
+ (conv3): Conv2d(
712
+ 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
713
+ (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
714
+ )
715
+ )
716
+ (1): BottleneckBlock(
717
+ (conv1): Conv2d(
718
+ 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
719
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
720
+ )
721
+ (conv2): Conv2d(
722
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
723
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
724
+ )
725
+ (conv3): Conv2d(
726
+ 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
727
+ (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
728
+ )
729
+ )
730
+ (2): BottleneckBlock(
731
+ (conv1): Conv2d(
732
+ 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
733
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
734
+ )
735
+ (conv2): Conv2d(
736
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
737
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
738
+ )
739
+ (conv3): Conv2d(
740
+ 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
741
+ (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
742
+ )
743
+ )
744
+ (3): BottleneckBlock(
745
+ (conv1): Conv2d(
746
+ 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
747
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
748
+ )
749
+ (conv2): Conv2d(
750
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
751
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
752
+ )
753
+ (conv3): Conv2d(
754
+ 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
755
+ (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
756
+ )
757
+ )
758
+ (4): BottleneckBlock(
759
+ (conv1): Conv2d(
760
+ 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
761
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
762
+ )
763
+ (conv2): Conv2d(
764
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
765
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
766
+ )
767
+ (conv3): Conv2d(
768
+ 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
769
+ (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
770
+ )
771
+ )
772
+ (5): BottleneckBlock(
773
+ (conv1): Conv2d(
774
+ 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
775
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
776
+ )
777
+ (conv2): Conv2d(
778
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
779
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
780
+ )
781
+ (conv3): Conv2d(
782
+ 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
783
+ (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
784
+ )
785
+ )
786
+ )
787
+ (res5): Sequential(
788
+ (0): BottleneckBlock(
789
+ (shortcut): Conv2d(
790
+ 1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False
791
+ (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
792
+ )
793
+ (conv1): Conv2d(
794
+ 1024, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
795
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
796
+ )
797
+ (conv2): Conv2d(
798
+ 512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
799
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
800
+ )
801
+ (conv3): Conv2d(
802
+ 512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
803
+ (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
804
+ )
805
+ )
806
+ (1): BottleneckBlock(
807
+ (conv1): Conv2d(
808
+ 2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
809
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
810
+ )
811
+ (conv2): Conv2d(
812
+ 512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
813
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
814
+ )
815
+ (conv3): Conv2d(
816
+ 512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
817
+ (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
818
+ )
819
+ )
820
+ (2): BottleneckBlock(
821
+ (conv1): Conv2d(
822
+ 2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
823
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
824
+ )
825
+ (conv2): Conv2d(
826
+ 512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
827
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
828
+ )
829
+ (conv3): Conv2d(
830
+ 512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
831
+ (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
832
+ )
833
+ )
834
+ )
835
+ )
836
+ )
837
+ (proposal_generator): RPN(
838
+ (rpn_head): StandardRPNHead(
839
+ (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
840
+ (objectness_logits): Conv2d(256, 3, kernel_size=(1, 1), stride=(1, 1))
841
+ (anchor_deltas): Conv2d(256, 12, kernel_size=(1, 1), stride=(1, 1))
842
+ )
843
+ (anchor_generator): DefaultAnchorGenerator(
844
+ (cell_anchors): BufferList()
845
+ )
846
+ )
847
+ (roi_heads): StandardROIHeads(
848
+ (box_pooler): ROIPooler(
849
+ (level_poolers): ModuleList(
850
+ (0): ROIAlign(output_size=(7, 7), spatial_scale=0.25, sampling_ratio=0, aligned=True)
851
+ (1): ROIAlign(output_size=(7, 7), spatial_scale=0.125, sampling_ratio=0, aligned=True)
852
+ (2): ROIAlign(output_size=(7, 7), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
853
+ (3): ROIAlign(output_size=(7, 7), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
854
+ )
855
+ )
856
+ (box_head): FastRCNNConvFCHead(
857
+ (flatten): Flatten(start_dim=1, end_dim=-1)
858
+ (fc1): Linear(in_features=12544, out_features=1024, bias=True)
859
+ (fc_relu1): ReLU()
860
+ (fc2): Linear(in_features=1024, out_features=1024, bias=True)
861
+ (fc_relu2): ReLU()
862
+ )
863
+ (box_predictor): FastRCNNOutputLayers(
864
+ (cls_score): Linear(in_features=1024, out_features=3, bias=True)
865
+ (bbox_pred): Linear(in_features=1024, out_features=8, bias=True)
866
+ )
867
+ (mask_pooler): ROIPooler(
868
+ (level_poolers): ModuleList(
869
+ (0): ROIAlign(output_size=(14, 14), spatial_scale=0.25, sampling_ratio=0, aligned=True)
870
+ (1): ROIAlign(output_size=(14, 14), spatial_scale=0.125, sampling_ratio=0, aligned=True)
871
+ (2): ROIAlign(output_size=(14, 14), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
872
+ (3): ROIAlign(output_size=(14, 14), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
873
+ )
874
+ )
875
+ (mask_head): MaskRCNNConvUpsampleHead(
876
+ (mask_fcn1): Conv2d(
877
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
878
+ (activation): ReLU()
879
+ )
880
+ (mask_fcn2): Conv2d(
881
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
882
+ (activation): ReLU()
883
+ )
884
+ (mask_fcn3): Conv2d(
885
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
886
+ (activation): ReLU()
887
+ )
888
+ (mask_fcn4): Conv2d(
889
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
890
+ (activation): ReLU()
891
+ )
892
+ (deconv): ConvTranspose2d(256, 256, kernel_size=(2, 2), stride=(2, 2))
893
+ (deconv_relu): ReLU()
894
+ (predictor): Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1))
895
+ )
896
+ )
897
+ )
898
+ [04/19 13:19:43] d2.data.dataset_mapper INFO: [DatasetMapper] Augmentations used in training: [ResizeShortestEdge(short_edge_length=(640, 672, 704, 736, 768, 800), max_size=1333, sample_style='choice'), RandomFlip(), RandomRotation(angle=[-90.0, 0.0])]
899
+ [04/19 13:19:43] d2.data.datasets.coco INFO: Loaded 36 images in COCO format from /content/drive/MyDrive/layoutparser/dataset6/train/via_project_19Apr2023_15h0m_coco.json
900
+ [04/19 13:19:43] d2.data.build INFO: Removed 6 images with no usable annotations. 30 images left.
901
+ [04/19 13:19:43] d2.data.build INFO: Distribution of instances among all 2 categories:
902
+ | category | #instances | category | #instances |
903
+ |:----------:|:-------------|:----------:|:-------------|
904
+ | | 89 | | 0 |
905
+ | | | | |
906
+ | total | 89 | | |
907
+ [04/19 13:19:43] d2.data.build INFO: Using training sampler TrainingSampler
908
+ [04/19 13:19:43] d2.data.common INFO: Serializing 30 elements to byte tensors and concatenating them all ...
909
+ [04/19 13:19:43] d2.data.common INFO: Serialized dataset takes 0.01 MiB
910
+ [04/19 13:19:43] d2.solver.build WARNING: SOLVER.STEPS contains values larger than SOLVER.MAX_ITER. These values will be ignored.
911
+ [04/19 13:19:45] fvcore.common.checkpoint INFO: Loading checkpoint from /content/drive/MyDrive/layoutparser/modele/modele3_NP?/
912
+ [04/19 13:20:18] detectron2 INFO: Rank of current process: 0. World size: 1
913
+ [04/19 13:20:20] detectron2 INFO: Environment info:
914
+ ---------------------- ----------------------------------------------------------------
915
+ sys.platform linux
916
+ Python 3.9.16 (main, Dec 7 2022, 01:11:51) [GCC 9.4.0]
917
+ numpy 1.22.4
918
+ detectron2 0.4 @/usr/local/lib/python3.9/dist-packages/detectron2
919
+ Compiler GCC 9.4
920
+ CUDA compiler CUDA 11.8
921
+ detectron2 arch flags 7.5
922
+ DETECTRON2_ENV_MODULE <not set>
923
+ PyTorch 2.0.0+cu118 @/usr/local/lib/python3.9/dist-packages/torch
924
+ PyTorch debug build False
925
+ GPU available True
926
+ GPU 0 Tesla T4 (arch=7.5)
927
+ CUDA_HOME /usr/local/cuda
928
+ Pillow 9.5.0
929
+ torchvision 0.15.1+cu118 @/usr/local/lib/python3.9/dist-packages/torchvision
930
+ torchvision arch flags 3.5, 5.0, 6.0, 7.0, 7.5, 8.0, 8.6
931
+ fvcore 0.1.3.post20210317
932
+ cv2 4.7.0
933
+ ---------------------- ----------------------------------------------------------------
934
+ PyTorch built with:
935
+ - GCC 9.3
936
+ - C++ Version: 201703
937
+ - Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
938
+ - Intel(R) MKL-DNN v2.7.3 (Git Hash 6dbeffbae1f23cbbeae17adb7b5b13f1f37c080e)
939
+ - OpenMP 201511 (a.k.a. OpenMP 4.5)
940
+ - LAPACK is enabled (usually provided by MKL)
941
+ - NNPACK is enabled
942
+ - CPU capability usage: AVX2
943
+ - CUDA Runtime 11.8
944
+ - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
945
+ - CuDNN 8.7
946
+ - Magma 2.6.1
947
+ - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.0.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
948
+
949
+ [04/19 13:20:20] detectron2 INFO: Command line arguments: Namespace(config_file='/content/layout-model-training/config_LayoutParser_PrimaDataset.yaml', resume=False, eval_only=False, num_gpus=1, num_machines=1, machine_rank=0, dist_url='tcp://127.0.0.1:49152', opts=['OUTPUT_DIR', '/content/drive/MyDrive/layoutparser/modele', 'SOLVER.IMS_PER_BATCH', '2'], dataset_name='modele', json_annotation_train='/content/drive/MyDrive/layoutparser/dataset6/train/via_project_19Apr2023_15h0m_coco.json', image_path_train='/content/drive/MyDrive/layoutparser/dataset6/train', json_annotation_val='/content/drive/MyDrive/layoutparser/dataset6/val/via_project_19Apr2023_15h9m_coco.json', image_path_val='/content/drive/MyDrive/layoutparser/dataset6/val')
950
+ [04/19 13:20:20] detectron2 INFO: Contents of args.config_file=/content/layout-model-training/config_LayoutParser_PrimaDataset.yaml:
951
+ CUDNN_BENCHMARK: false
952
+ DATALOADER:
953
+ ASPECT_RATIO_GROUPING: true
954
+ FILTER_EMPTY_ANNOTATIONS: true
955
+ NUM_WORKERS: 4
956
+ REPEAT_THRESHOLD: 0.0
957
+ SAMPLER_TRAIN: TrainingSampler
958
+ DATASETS:
959
+ PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
960
+ PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
961
+ PROPOSAL_FILES_TEST: []
962
+ PROPOSAL_FILES_TRAIN: []
963
+ TEST:
964
+ - prima-layout-val
965
+ TRAIN:
966
+ - prima-layout-train
967
+ GLOBAL:
968
+ HACK: 1.0
969
+ INPUT:
970
+ CROP:
971
+ ENABLED: false
972
+ SIZE:
973
+ - 0.9
974
+ - 0.9
975
+ TYPE: relative_range
976
+ FORMAT: BGR
977
+ MASK_FORMAT: polygon
978
+ MAX_SIZE_TEST: 1333
979
+ MAX_SIZE_TRAIN: 1333
980
+ MIN_SIZE_TEST: 800
981
+ MIN_SIZE_TRAIN:
982
+ - 640
983
+ - 672
984
+ - 704
985
+ - 736
986
+ - 768
987
+ - 800
988
+ MIN_SIZE_TRAIN_SAMPLING: choice
989
+ MODEL:
990
+ ANCHOR_GENERATOR:
991
+ ANGLES:
992
+ - - -90
993
+ - 0
994
+ - 90
995
+ ASPECT_RATIOS:
996
+ - - 0.5
997
+ - 1.0
998
+ - 2.0
999
+ NAME: DefaultAnchorGenerator
1000
+ OFFSET: 0.0
1001
+ SIZES:
1002
+ - - 32
1003
+ - - 64
1004
+ - - 128
1005
+ - - 256
1006
+ - - 512
1007
+ BACKBONE:
1008
+ FREEZE_AT: 2
1009
+ NAME: build_resnet_fpn_backbone
1010
+ DEVICE: cuda
1011
+ FPN:
1012
+ FUSE_TYPE: sum
1013
+ IN_FEATURES:
1014
+ - res2
1015
+ - res3
1016
+ - res4
1017
+ - res5
1018
+ NORM: ''
1019
+ OUT_CHANNELS: 256
1020
+ KEYPOINT_ON: false
1021
+ LOAD_PROPOSALS: false
1022
+ MASK_ON: true
1023
+ META_ARCHITECTURE: GeneralizedRCNN
1024
+ PANOPTIC_FPN:
1025
+ COMBINE:
1026
+ ENABLED: true
1027
+ INSTANCES_CONFIDENCE_THRESH: 0.5
1028
+ OVERLAP_THRESH: 0.5
1029
+ STUFF_AREA_LIMIT: 4096
1030
+ INSTANCE_LOSS_WEIGHT: 1.0
1031
+ PIXEL_MEAN:
1032
+ - 103.53
1033
+ - 116.28
1034
+ - 123.675
1035
+ PIXEL_STD:
1036
+ - 1.0
1037
+ - 1.0
1038
+ - 1.0
1039
+ PROPOSAL_GENERATOR:
1040
+ MIN_SIZE: 0
1041
+ NAME: RPN
1042
+ RESNETS:
1043
+ DEFORM_MODULATED: false
1044
+ DEFORM_NUM_GROUPS: 1
1045
+ DEFORM_ON_PER_STAGE:
1046
+ - false
1047
+ - false
1048
+ - false
1049
+ - false
1050
+ DEPTH: 50
1051
+ NORM: FrozenBN
1052
+ NUM_GROUPS: 1
1053
+ OUT_FEATURES:
1054
+ - res2
1055
+ - res3
1056
+ - res4
1057
+ - res5
1058
+ RES2_OUT_CHANNELS: 256
1059
+ RES5_DILATION: 1
1060
+ STEM_OUT_CHANNELS: 64
1061
+ STRIDE_IN_1X1: true
1062
+ WIDTH_PER_GROUP: 64
1063
+ RETINANET:
1064
+ BBOX_REG_WEIGHTS:
1065
+ - 1.0
1066
+ - 1.0
1067
+ - 1.0
1068
+ - 1.0
1069
+ FOCAL_LOSS_ALPHA: 0.25
1070
+ FOCAL_LOSS_GAMMA: 2.0
1071
+ IN_FEATURES:
1072
+ - p3
1073
+ - p4
1074
+ - p5
1075
+ - p6
1076
+ - p7
1077
+ IOU_LABELS:
1078
+ - 0
1079
+ - -1
1080
+ - 1
1081
+ IOU_THRESHOLDS:
1082
+ - 0.4
1083
+ - 0.5
1084
+ NMS_THRESH_TEST: 0.5
1085
+ NUM_CLASSES: 80
1086
+ NUM_CONVS: 4
1087
+ PRIOR_PROB: 0.01
1088
+ SCORE_THRESH_TEST: 0.05
1089
+ SMOOTH_L1_LOSS_BETA: 0.1
1090
+ TOPK_CANDIDATES_TEST: 1000
1091
+ ROI_BOX_CASCADE_HEAD:
1092
+ BBOX_REG_WEIGHTS:
1093
+ - - 10.0
1094
+ - 10.0
1095
+ - 5.0
1096
+ - 5.0
1097
+ - - 20.0
1098
+ - 20.0
1099
+ - 10.0
1100
+ - 10.0
1101
+ - - 30.0
1102
+ - 30.0
1103
+ - 15.0
1104
+ - 15.0
1105
+ IOUS:
1106
+ - 0.5
1107
+ - 0.6
1108
+ - 0.7
1109
+ ROI_BOX_HEAD:
1110
+ BBOX_REG_WEIGHTS:
1111
+ - 10.0
1112
+ - 10.0
1113
+ - 5.0
1114
+ - 5.0
1115
+ CLS_AGNOSTIC_BBOX_REG: false
1116
+ CONV_DIM: 256
1117
+ FC_DIM: 1024
1118
+ NAME: FastRCNNConvFCHead
1119
+ NORM: ''
1120
+ NUM_CONV: 0
1121
+ NUM_FC: 2
1122
+ POOLER_RESOLUTION: 7
1123
+ POOLER_SAMPLING_RATIO: 0
1124
+ POOLER_TYPE: ROIAlignV2
1125
+ SMOOTH_L1_BETA: 0.0
1126
+ TRAIN_ON_PRED_BOXES: false
1127
+ ROI_HEADS:
1128
+ BATCH_SIZE_PER_IMAGE: 512
1129
+ IN_FEATURES:
1130
+ - p2
1131
+ - p3
1132
+ - p4
1133
+ - p5
1134
+ IOU_LABELS:
1135
+ - 0
1136
+ - 1
1137
+ IOU_THRESHOLDS:
1138
+ - 0.5
1139
+ NAME: StandardROIHeads
1140
+ NMS_THRESH_TEST: 0.5
1141
+ NUM_CLASSES: 7
1142
+ POSITIVE_FRACTION: 0.25
1143
+ PROPOSAL_APPEND_GT: true
1144
+ SCORE_THRESH_TEST: 0.05
1145
+ ROI_KEYPOINT_HEAD:
1146
+ CONV_DIMS:
1147
+ - 512
1148
+ - 512
1149
+ - 512
1150
+ - 512
1151
+ - 512
1152
+ - 512
1153
+ - 512
1154
+ - 512
1155
+ LOSS_WEIGHT: 1.0
1156
+ MIN_KEYPOINTS_PER_IMAGE: 1
1157
+ NAME: KRCNNConvDeconvUpsampleHead
1158
+ NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true
1159
+ NUM_KEYPOINTS: 17
1160
+ POOLER_RESOLUTION: 14
1161
+ POOLER_SAMPLING_RATIO: 0
1162
+ POOLER_TYPE: ROIAlignV2
1163
+ ROI_MASK_HEAD:
1164
+ CLS_AGNOSTIC_MASK: false
1165
+ CONV_DIM: 256
1166
+ NAME: MaskRCNNConvUpsampleHead
1167
+ NORM: ''
1168
+ NUM_CONV: 4
1169
+ POOLER_RESOLUTION: 14
1170
+ POOLER_SAMPLING_RATIO: 0
1171
+ POOLER_TYPE: ROIAlignV2
1172
+ RPN:
1173
+ BATCH_SIZE_PER_IMAGE: 256
1174
+ BBOX_REG_WEIGHTS:
1175
+ - 1.0
1176
+ - 1.0
1177
+ - 1.0
1178
+ - 1.0
1179
+ BOUNDARY_THRESH: -1
1180
+ HEAD_NAME: StandardRPNHead
1181
+ IN_FEATURES:
1182
+ - p2
1183
+ - p3
1184
+ - p4
1185
+ - p5
1186
+ - p6
1187
+ IOU_LABELS:
1188
+ - 0
1189
+ - -1
1190
+ - 1
1191
+ IOU_THRESHOLDS:
1192
+ - 0.3
1193
+ - 0.7
1194
+ LOSS_WEIGHT: 1.0
1195
+ NMS_THRESH: 0.7
1196
+ POSITIVE_FRACTION: 0.5
1197
+ POST_NMS_TOPK_TEST: 1000
1198
+ POST_NMS_TOPK_TRAIN: 1000
1199
+ PRE_NMS_TOPK_TEST: 1000
1200
+ PRE_NMS_TOPK_TRAIN: 2000
1201
+ SMOOTH_L1_BETA: 0.0
1202
+ SEM_SEG_HEAD:
1203
+ COMMON_STRIDE: 4
1204
+ CONVS_DIM: 128
1205
+ IGNORE_VALUE: 255
1206
+ IN_FEATURES:
1207
+ - p2
1208
+ - p3
1209
+ - p4
1210
+ - p5
1211
+ LOSS_WEIGHT: 1.0
1212
+ NAME: SemSegFPNHead
1213
+ NORM: GN
1214
+ NUM_CLASSES: 54
1215
+ WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/modele_final.pth
1216
+ OUTPUT_DIR: ../outputs/prima/mask_rcnn_R_50_FPN_3x/
1217
+ SEED: -1
1218
+ SOLVER:
1219
+ BASE_LR: 0.00025
1220
+ BIAS_LR_FACTOR: 1.0
1221
+ CHECKPOINT_PERIOD: 50
1222
+ CLIP_GRADIENTS:
1223
+ CLIP_TYPE: value
1224
+ CLIP_VALUE: 1.0
1225
+ ENABLED: false
1226
+ NORM_TYPE: 2.0
1227
+ GAMMA: 0.1
1228
+ IMS_PER_BATCH: 2
1229
+ LR_SCHEDULER_NAME: WarmupMultiStepLR
1230
+ MAX_ITER: 300
1231
+ MOMENTUM: 0.9
1232
+ NESTEROV: false
1233
+ STEPS:
1234
+ - 210000
1235
+ - 250000
1236
+ WARMUP_FACTOR: 0.001
1237
+ WARMUP_ITERS: 1000
1238
+ WARMUP_METHOD: linear
1239
+ WEIGHT_DECAY: 0.0001
1240
+ WEIGHT_DECAY_BIAS: 0.0001
1241
+ WEIGHT_DECAY_NORM: 0.0
1242
+ TEST:
1243
+ AUG:
1244
+ ENABLED: false
1245
+ FLIP: true
1246
+ MAX_SIZE: 4000
1247
+ MIN_SIZES:
1248
+ - 400
1249
+ - 500
1250
+ - 600
1251
+ - 700
1252
+ - 800
1253
+ - 900
1254
+ - 1000
1255
+ - 1100
1256
+ - 1200
1257
+ DETECTIONS_PER_IMAGE: 100
1258
+ EVAL_PERIOD: 0
1259
+ EXPECTED_RESULTS: []
1260
+ KEYPOINT_OKS_SIGMAS: []
1261
+ PRECISE_BN:
1262
+ ENABLED: false
1263
+ NUM_ITER: 200
1264
+ VERSION: 2
1265
+ VIS_PERIOD: 0
1266
+
1267
+ [04/19 13:20:20] detectron2 INFO: Running with full config:
1268
+ CUDNN_BENCHMARK: False
1269
+ DATALOADER:
1270
+ ASPECT_RATIO_GROUPING: True
1271
+ FILTER_EMPTY_ANNOTATIONS: True
1272
+ NUM_WORKERS: 4
1273
+ REPEAT_THRESHOLD: 0.0
1274
+ SAMPLER_TRAIN: TrainingSampler
1275
+ DATASETS:
1276
+ PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
1277
+ PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
1278
+ PROPOSAL_FILES_TEST: ()
1279
+ PROPOSAL_FILES_TRAIN: ()
1280
+ TEST: ('modele-val',)
1281
+ TRAIN: ('modele-train',)
1282
+ GLOBAL:
1283
+ HACK: 1.0
1284
+ INPUT:
1285
+ CROP:
1286
+ ENABLED: False
1287
+ SIZE: [0.9, 0.9]
1288
+ TYPE: relative_range
1289
+ FORMAT: BGR
1290
+ MASK_FORMAT: polygon
1291
+ MAX_SIZE_TEST: 1333
1292
+ MAX_SIZE_TRAIN: 1333
1293
+ MIN_SIZE_TEST: 800
1294
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
1295
+ MIN_SIZE_TRAIN_SAMPLING: choice
1296
+ RANDOM_FLIP: horizontal
1297
+ MODEL:
1298
+ ANCHOR_GENERATOR:
1299
+ ANGLES: [[-90, 0, 90]]
1300
+ ASPECT_RATIOS: [[0.5, 1.0, 2.0]]
1301
+ NAME: DefaultAnchorGenerator
1302
+ OFFSET: 0.0
1303
+ SIZES: [[32], [64], [128], [256], [512]]
1304
+ BACKBONE:
1305
+ FREEZE_AT: 2
1306
+ NAME: build_resnet_fpn_backbone
1307
+ DEVICE: cuda
1308
+ FPN:
1309
+ FUSE_TYPE: sum
1310
+ IN_FEATURES: ['res2', 'res3', 'res4', 'res5']
1311
+ NORM:
1312
+ OUT_CHANNELS: 256
1313
+ KEYPOINT_ON: False
1314
+ LOAD_PROPOSALS: False
1315
+ MASK_ON: True
1316
+ META_ARCHITECTURE: GeneralizedRCNN
1317
+ PANOPTIC_FPN:
1318
+ COMBINE:
1319
+ ENABLED: True
1320
+ INSTANCES_CONFIDENCE_THRESH: 0.5
1321
+ OVERLAP_THRESH: 0.5
1322
+ STUFF_AREA_LIMIT: 4096
1323
+ INSTANCE_LOSS_WEIGHT: 1.0
1324
+ PIXEL_MEAN: [103.53, 116.28, 123.675]
1325
+ PIXEL_STD: [1.0, 1.0, 1.0]
1326
+ PROPOSAL_GENERATOR:
1327
+ MIN_SIZE: 0
1328
+ NAME: RPN
1329
+ RESNETS:
1330
+ DEFORM_MODULATED: False
1331
+ DEFORM_NUM_GROUPS: 1
1332
+ DEFORM_ON_PER_STAGE: [False, False, False, False]
1333
+ DEPTH: 50
1334
+ NORM: FrozenBN
1335
+ NUM_GROUPS: 1
1336
+ OUT_FEATURES: ['res2', 'res3', 'res4', 'res5']
1337
+ RES2_OUT_CHANNELS: 256
1338
+ RES5_DILATION: 1
1339
+ STEM_OUT_CHANNELS: 64
1340
+ STRIDE_IN_1X1: True
1341
+ WIDTH_PER_GROUP: 64
1342
+ RETINANET:
1343
+ BBOX_REG_LOSS_TYPE: smooth_l1
1344
+ BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0)
1345
+ FOCAL_LOSS_ALPHA: 0.25
1346
+ FOCAL_LOSS_GAMMA: 2.0
1347
+ IN_FEATURES: ['p3', 'p4', 'p5', 'p6', 'p7']
1348
+ IOU_LABELS: [0, -1, 1]
1349
+ IOU_THRESHOLDS: [0.4, 0.5]
1350
+ NMS_THRESH_TEST: 0.5
1351
+ NORM:
1352
+ NUM_CLASSES: 80
1353
+ NUM_CONVS: 4
1354
+ PRIOR_PROB: 0.01
1355
+ SCORE_THRESH_TEST: 0.05
1356
+ SMOOTH_L1_LOSS_BETA: 0.1
1357
+ TOPK_CANDIDATES_TEST: 1000
1358
+ ROI_BOX_CASCADE_HEAD:
1359
+ BBOX_REG_WEIGHTS: ([10.0, 10.0, 5.0, 5.0], [20.0, 20.0, 10.0, 10.0], [30.0, 30.0, 15.0, 15.0])
1360
+ IOUS: (0.5, 0.6, 0.7)
1361
+ ROI_BOX_HEAD:
1362
+ BBOX_REG_LOSS_TYPE: smooth_l1
1363
+ BBOX_REG_LOSS_WEIGHT: 1.0
1364
+ BBOX_REG_WEIGHTS: (10.0, 10.0, 5.0, 5.0)
1365
+ CLS_AGNOSTIC_BBOX_REG: False
1366
+ CONV_DIM: 256
1367
+ FC_DIM: 1024
1368
+ NAME: FastRCNNConvFCHead
1369
+ NORM:
1370
+ NUM_CONV: 0
1371
+ NUM_FC: 2
1372
+ POOLER_RESOLUTION: 7
1373
+ POOLER_SAMPLING_RATIO: 0
1374
+ POOLER_TYPE: ROIAlignV2
1375
+ SMOOTH_L1_BETA: 0.0
1376
+ TRAIN_ON_PRED_BOXES: False
1377
+ ROI_HEADS:
1378
+ BATCH_SIZE_PER_IMAGE: 512
1379
+ IN_FEATURES: ['p2', 'p3', 'p4', 'p5']
1380
+ IOU_LABELS: [0, 1]
1381
+ IOU_THRESHOLDS: [0.5]
1382
+ NAME: StandardROIHeads
1383
+ NMS_THRESH_TEST: 0.5
1384
+ NUM_CLASSES: 2
1385
+ POSITIVE_FRACTION: 0.25
1386
+ PROPOSAL_APPEND_GT: True
1387
+ SCORE_THRESH_TEST: 0.05
1388
+ ROI_KEYPOINT_HEAD:
1389
+ CONV_DIMS: (512, 512, 512, 512, 512, 512, 512, 512)
1390
+ LOSS_WEIGHT: 1.0
1391
+ MIN_KEYPOINTS_PER_IMAGE: 1
1392
+ NAME: KRCNNConvDeconvUpsampleHead
1393
+ NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: True
1394
+ NUM_KEYPOINTS: 17
1395
+ POOLER_RESOLUTION: 14
1396
+ POOLER_SAMPLING_RATIO: 0
1397
+ POOLER_TYPE: ROIAlignV2
1398
+ ROI_MASK_HEAD:
1399
+ CLS_AGNOSTIC_MASK: False
1400
+ CONV_DIM: 256
1401
+ NAME: MaskRCNNConvUpsampleHead
1402
+ NORM:
1403
+ NUM_CONV: 4
1404
+ POOLER_RESOLUTION: 14
1405
+ POOLER_SAMPLING_RATIO: 0
1406
+ POOLER_TYPE: ROIAlignV2
1407
+ RPN:
1408
+ BATCH_SIZE_PER_IMAGE: 256
1409
+ BBOX_REG_LOSS_TYPE: smooth_l1
1410
+ BBOX_REG_LOSS_WEIGHT: 1.0
1411
+ BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0)
1412
+ BOUNDARY_THRESH: -1
1413
+ HEAD_NAME: StandardRPNHead
1414
+ IN_FEATURES: ['p2', 'p3', 'p4', 'p5', 'p6']
1415
+ IOU_LABELS: [0, -1, 1]
1416
+ IOU_THRESHOLDS: [0.3, 0.7]
1417
+ LOSS_WEIGHT: 1.0
1418
+ NMS_THRESH: 0.7
1419
+ POSITIVE_FRACTION: 0.5
1420
+ POST_NMS_TOPK_TEST: 1000
1421
+ POST_NMS_TOPK_TRAIN: 1000
1422
+ PRE_NMS_TOPK_TEST: 1000
1423
+ PRE_NMS_TOPK_TRAIN: 2000
1424
+ SMOOTH_L1_BETA: 0.0
1425
+ SEM_SEG_HEAD:
1426
+ COMMON_STRIDE: 4
1427
+ CONVS_DIM: 128
1428
+ IGNORE_VALUE: 255
1429
+ IN_FEATURES: ['p2', 'p3', 'p4', 'p5']
1430
+ LOSS_WEIGHT: 1.0
1431
+ NAME: SemSegFPNHead
1432
+ NORM: GN
1433
+ NUM_CLASSES: 54
1434
+ WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/modele_final.pth
1435
+ OUTPUT_DIR: /content/drive/MyDrive/layoutparser/modele
1436
+ SEED: -1
1437
+ SOLVER:
1438
+ AMP:
1439
+ ENABLED: False
1440
+ BASE_LR: 0.00025
1441
+ BIAS_LR_FACTOR: 1.0
1442
+ CHECKPOINT_PERIOD: 50
1443
+ CLIP_GRADIENTS:
1444
+ CLIP_TYPE: value
1445
+ CLIP_VALUE: 1.0
1446
+ ENABLED: False
1447
+ NORM_TYPE: 2.0
1448
+ GAMMA: 0.1
1449
+ IMS_PER_BATCH: 2
1450
+ LR_SCHEDULER_NAME: WarmupMultiStepLR
1451
+ MAX_ITER: 300
1452
+ MOMENTUM: 0.9
1453
+ NESTEROV: False
1454
+ REFERENCE_WORLD_SIZE: 0
1455
+ STEPS: (210000, 250000)
1456
+ WARMUP_FACTOR: 0.001
1457
+ WARMUP_ITERS: 1000
1458
+ WARMUP_METHOD: linear
1459
+ WEIGHT_DECAY: 0.0001
1460
+ WEIGHT_DECAY_BIAS: 0.0001
1461
+ WEIGHT_DECAY_NORM: 0.0
1462
+ TEST:
1463
+ AUG:
1464
+ ENABLED: False
1465
+ FLIP: True
1466
+ MAX_SIZE: 4000
1467
+ MIN_SIZES: (400, 500, 600, 700, 800, 900, 1000, 1100, 1200)
1468
+ DETECTIONS_PER_IMAGE: 100
1469
+ EVAL_PERIOD: 0
1470
+ EXPECTED_RESULTS: []
1471
+ KEYPOINT_OKS_SIGMAS: []
1472
+ PRECISE_BN:
1473
+ ENABLED: False
1474
+ NUM_ITER: 200
1475
+ VERSION: 2
1476
+ VIS_PERIOD: 0
1477
+ [04/19 13:20:20] detectron2 INFO: Full config saved to /content/drive/MyDrive/layoutparser/modele/config.yaml
1478
+ [04/19 13:20:20] d2.utils.env INFO: Using a generated random seed 20261058
1479
+ [04/19 13:20:22] d2.engine.defaults INFO: Model:
1480
+ GeneralizedRCNN(
1481
+ (backbone): FPN(
1482
+ (fpn_lateral2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
1483
+ (fpn_output2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
1484
+ (fpn_lateral3): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
1485
+ (fpn_output3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
1486
+ (fpn_lateral4): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
1487
+ (fpn_output4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
1488
+ (fpn_lateral5): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
1489
+ (fpn_output5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
1490
+ (top_block): LastLevelMaxPool()
1491
+ (bottom_up): ResNet(
1492
+ (stem): BasicStem(
1493
+ (conv1): Conv2d(
1494
+ 3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False
1495
+ (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
1496
+ )
1497
+ )
1498
+ (res2): Sequential(
1499
+ (0): BottleneckBlock(
1500
+ (shortcut): Conv2d(
1501
+ 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
1502
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
1503
+ )
1504
+ (conv1): Conv2d(
1505
+ 64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
1506
+ (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
1507
+ )
1508
+ (conv2): Conv2d(
1509
+ 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
1510
+ (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
1511
+ )
1512
+ (conv3): Conv2d(
1513
+ 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
1514
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
1515
+ )
1516
+ )
1517
+ (1): BottleneckBlock(
1518
+ (conv1): Conv2d(
1519
+ 256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
1520
+ (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
1521
+ )
1522
+ (conv2): Conv2d(
1523
+ 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
1524
+ (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
1525
+ )
1526
+ (conv3): Conv2d(
1527
+ 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
1528
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
1529
+ )
1530
+ )
1531
+ (2): BottleneckBlock(
1532
+ (conv1): Conv2d(
1533
+ 256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
1534
+ (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
1535
+ )
1536
+ (conv2): Conv2d(
1537
+ 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
1538
+ (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
1539
+ )
1540
+ (conv3): Conv2d(
1541
+ 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
1542
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
1543
+ )
1544
+ )
1545
+ )
1546
+ (res3): Sequential(
1547
+ (0): BottleneckBlock(
1548
+ (shortcut): Conv2d(
1549
+ 256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
1550
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
1551
+ )
1552
+ (conv1): Conv2d(
1553
+ 256, 128, kernel_size=(1, 1), stride=(2, 2), bias=False
1554
+ (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
1555
+ )
1556
+ (conv2): Conv2d(
1557
+ 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
1558
+ (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
1559
+ )
1560
+ (conv3): Conv2d(
1561
+ 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
1562
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
1563
+ )
1564
+ )
1565
+ (1): BottleneckBlock(
1566
+ (conv1): Conv2d(
1567
+ 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
1568
+ (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
1569
+ )
1570
+ (conv2): Conv2d(
1571
+ 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
1572
+ (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
1573
+ )
1574
+ (conv3): Conv2d(
1575
+ 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
1576
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
1577
+ )
1578
+ )
1579
+ (2): BottleneckBlock(
1580
+ (conv1): Conv2d(
1581
+ 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
1582
+ (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
1583
+ )
1584
+ (conv2): Conv2d(
1585
+ 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
1586
+ (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
1587
+ )
1588
+ (conv3): Conv2d(
1589
+ 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
1590
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
1591
+ )
1592
+ )
1593
+ (3): BottleneckBlock(
1594
+ (conv1): Conv2d(
1595
+ 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
1596
+ (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
1597
+ )
1598
+ (conv2): Conv2d(
1599
+ 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
1600
+ (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
1601
+ )
1602
+ (conv3): Conv2d(
1603
+ 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
1604
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
1605
+ )
1606
+ )
1607
+ )
1608
+ (res4): Sequential(
1609
+ (0): BottleneckBlock(
1610
+ (shortcut): Conv2d(
1611
+ 512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False
1612
+ (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
1613
+ )
1614
+ (conv1): Conv2d(
1615
+ 512, 256, kernel_size=(1, 1), stride=(2, 2), bias=False
1616
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
1617
+ )
1618
+ (conv2): Conv2d(
1619
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
1620
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
1621
+ )
1622
+ (conv3): Conv2d(
1623
+ 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
1624
+ (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
1625
+ )
1626
+ )
1627
+ (1): BottleneckBlock(
1628
+ (conv1): Conv2d(
1629
+ 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
1630
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
1631
+ )
1632
+ (conv2): Conv2d(
1633
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
1634
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
1635
+ )
1636
+ (conv3): Conv2d(
1637
+ 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
1638
+ (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
1639
+ )
1640
+ )
1641
+ (2): BottleneckBlock(
1642
+ (conv1): Conv2d(
1643
+ 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
1644
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
1645
+ )
1646
+ (conv2): Conv2d(
1647
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
1648
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
1649
+ )
1650
+ (conv3): Conv2d(
1651
+ 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
1652
+ (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
1653
+ )
1654
+ )
1655
+ (3): BottleneckBlock(
1656
+ (conv1): Conv2d(
1657
+ 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
1658
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
1659
+ )
1660
+ (conv2): Conv2d(
1661
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
1662
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
1663
+ )
1664
+ (conv3): Conv2d(
1665
+ 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
1666
+ (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
1667
+ )
1668
+ )
1669
+ (4): BottleneckBlock(
1670
+ (conv1): Conv2d(
1671
+ 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
1672
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
1673
+ )
1674
+ (conv2): Conv2d(
1675
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
1676
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
1677
+ )
1678
+ (conv3): Conv2d(
1679
+ 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
1680
+ (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
1681
+ )
1682
+ )
1683
+ (5): BottleneckBlock(
1684
+ (conv1): Conv2d(
1685
+ 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
1686
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
1687
+ )
1688
+ (conv2): Conv2d(
1689
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
1690
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
1691
+ )
1692
+ (conv3): Conv2d(
1693
+ 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
1694
+ (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
1695
+ )
1696
+ )
1697
+ )
1698
+ (res5): Sequential(
1699
+ (0): BottleneckBlock(
1700
+ (shortcut): Conv2d(
1701
+ 1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False
1702
+ (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
1703
+ )
1704
+ (conv1): Conv2d(
1705
+ 1024, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
1706
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
1707
+ )
1708
+ (conv2): Conv2d(
1709
+ 512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
1710
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
1711
+ )
1712
+ (conv3): Conv2d(
1713
+ 512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
1714
+ (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
1715
+ )
1716
+ )
1717
+ (1): BottleneckBlock(
1718
+ (conv1): Conv2d(
1719
+ 2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
1720
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
1721
+ )
1722
+ (conv2): Conv2d(
1723
+ 512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
1724
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
1725
+ )
1726
+ (conv3): Conv2d(
1727
+ 512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
1728
+ (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
1729
+ )
1730
+ )
1731
+ (2): BottleneckBlock(
1732
+ (conv1): Conv2d(
1733
+ 2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
1734
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
1735
+ )
1736
+ (conv2): Conv2d(
1737
+ 512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
1738
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
1739
+ )
1740
+ (conv3): Conv2d(
1741
+ 512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
1742
+ (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
1743
+ )
1744
+ )
1745
+ )
1746
+ )
1747
+ )
1748
+ (proposal_generator): RPN(
1749
+ (rpn_head): StandardRPNHead(
1750
+ (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
1751
+ (objectness_logits): Conv2d(256, 3, kernel_size=(1, 1), stride=(1, 1))
1752
+ (anchor_deltas): Conv2d(256, 12, kernel_size=(1, 1), stride=(1, 1))
1753
+ )
1754
+ (anchor_generator): DefaultAnchorGenerator(
1755
+ (cell_anchors): BufferList()
1756
+ )
1757
+ )
1758
+ (roi_heads): StandardROIHeads(
1759
+ (box_pooler): ROIPooler(
1760
+ (level_poolers): ModuleList(
1761
+ (0): ROIAlign(output_size=(7, 7), spatial_scale=0.25, sampling_ratio=0, aligned=True)
1762
+ (1): ROIAlign(output_size=(7, 7), spatial_scale=0.125, sampling_ratio=0, aligned=True)
1763
+ (2): ROIAlign(output_size=(7, 7), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
1764
+ (3): ROIAlign(output_size=(7, 7), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
1765
+ )
1766
+ )
1767
+ (box_head): FastRCNNConvFCHead(
1768
+ (flatten): Flatten(start_dim=1, end_dim=-1)
1769
+ (fc1): Linear(in_features=12544, out_features=1024, bias=True)
1770
+ (fc_relu1): ReLU()
1771
+ (fc2): Linear(in_features=1024, out_features=1024, bias=True)
1772
+ (fc_relu2): ReLU()
1773
+ )
1774
+ (box_predictor): FastRCNNOutputLayers(
1775
+ (cls_score): Linear(in_features=1024, out_features=3, bias=True)
1776
+ (bbox_pred): Linear(in_features=1024, out_features=8, bias=True)
1777
+ )
1778
+ (mask_pooler): ROIPooler(
1779
+ (level_poolers): ModuleList(
1780
+ (0): ROIAlign(output_size=(14, 14), spatial_scale=0.25, sampling_ratio=0, aligned=True)
1781
+ (1): ROIAlign(output_size=(14, 14), spatial_scale=0.125, sampling_ratio=0, aligned=True)
1782
+ (2): ROIAlign(output_size=(14, 14), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
1783
+ (3): ROIAlign(output_size=(14, 14), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
1784
+ )
1785
+ )
1786
+ (mask_head): MaskRCNNConvUpsampleHead(
1787
+ (mask_fcn1): Conv2d(
1788
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
1789
+ (activation): ReLU()
1790
+ )
1791
+ (mask_fcn2): Conv2d(
1792
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
1793
+ (activation): ReLU()
1794
+ )
1795
+ (mask_fcn3): Conv2d(
1796
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
1797
+ (activation): ReLU()
1798
+ )
1799
+ (mask_fcn4): Conv2d(
1800
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
1801
+ (activation): ReLU()
1802
+ )
1803
+ (deconv): ConvTranspose2d(256, 256, kernel_size=(2, 2), stride=(2, 2))
1804
+ (deconv_relu): ReLU()
1805
+ (predictor): Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1))
1806
+ )
1807
+ )
1808
+ )
1809
+ [04/19 13:20:22] d2.data.dataset_mapper INFO: [DatasetMapper] Augmentations used in training: [ResizeShortestEdge(short_edge_length=(640, 672, 704, 736, 768, 800), max_size=1333, sample_style='choice'), RandomFlip(), RandomRotation(angle=[-90.0, 0.0])]
1810
+ [04/19 13:20:22] d2.data.datasets.coco INFO: Loaded 36 images in COCO format from /content/drive/MyDrive/layoutparser/dataset6/train/via_project_19Apr2023_15h0m_coco.json
1811
+ [04/19 13:20:22] d2.data.build INFO: Removed 6 images with no usable annotations. 30 images left.
1812
+ [04/19 13:20:22] d2.data.build INFO: Distribution of instances among all 2 categories:
1813
+ | category | #instances | category | #instances |
1814
+ |:----------:|:-------------|:----------:|:-------------|
1815
+ | | 89 | | 0 |
1816
+ | | | | |
1817
+ | total | 89 | | |
1818
+ [04/19 13:20:22] d2.data.build INFO: Using training sampler TrainingSampler
1819
+ [04/19 13:20:22] d2.data.common INFO: Serializing 30 elements to byte tensors and concatenating them all ...
1820
+ [04/19 13:20:22] d2.data.common INFO: Serialized dataset takes 0.01 MiB
1821
+ [04/19 13:20:22] d2.solver.build WARNING: SOLVER.STEPS contains values larger than SOLVER.MAX_ITER. These values will be ignored.
1822
+ [04/19 13:20:24] fvcore.common.checkpoint INFO: Loading checkpoint from /content/drive/MyDrive/layoutparser/modele/modele3_NP?/modele_final.pth
1823
+ [04/19 13:21:19] detectron2 INFO: Rank of current process: 0. World size: 1
1824
+ [04/19 13:21:20] detectron2 INFO: Environment info:
1825
+ ---------------------- ----------------------------------------------------------------
1826
+ sys.platform linux
1827
+ Python 3.9.16 (main, Dec 7 2022, 01:11:51) [GCC 9.4.0]
1828
+ numpy 1.22.4
1829
+ detectron2 0.4 @/usr/local/lib/python3.9/dist-packages/detectron2
1830
+ Compiler GCC 9.4
1831
+ CUDA compiler CUDA 11.8
1832
+ detectron2 arch flags 7.5
1833
+ DETECTRON2_ENV_MODULE <not set>
1834
+ PyTorch 2.0.0+cu118 @/usr/local/lib/python3.9/dist-packages/torch
1835
+ PyTorch debug build False
1836
+ GPU available True
1837
+ GPU 0 Tesla T4 (arch=7.5)
1838
+ CUDA_HOME /usr/local/cuda
1839
+ Pillow 9.5.0
1840
+ torchvision 0.15.1+cu118 @/usr/local/lib/python3.9/dist-packages/torchvision
1841
+ torchvision arch flags 3.5, 5.0, 6.0, 7.0, 7.5, 8.0, 8.6
1842
+ fvcore 0.1.3.post20210317
1843
+ cv2 4.7.0
1844
+ ---------------------- ----------------------------------------------------------------
1845
+ PyTorch built with:
1846
+ - GCC 9.3
1847
+ - C++ Version: 201703
1848
+ - Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
1849
+ - Intel(R) MKL-DNN v2.7.3 (Git Hash 6dbeffbae1f23cbbeae17adb7b5b13f1f37c080e)
1850
+ - OpenMP 201511 (a.k.a. OpenMP 4.5)
1851
+ - LAPACK is enabled (usually provided by MKL)
1852
+ - NNPACK is enabled
1853
+ - CPU capability usage: AVX2
1854
+ - CUDA Runtime 11.8
1855
+ - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
1856
+ - CuDNN 8.7
1857
+ - Magma 2.6.1
1858
+ - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.0.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
1859
+
1860
+ [04/19 13:21:20] detectron2 INFO: Command line arguments: Namespace(config_file='/content/layout-model-training/config_LayoutParser_PrimaDataset.yaml', resume=False, eval_only=False, num_gpus=1, num_machines=1, machine_rank=0, dist_url='tcp://127.0.0.1:49152', opts=['OUTPUT_DIR', '/content/drive/MyDrive/layoutparser/modele', 'SOLVER.IMS_PER_BATCH', '2'], dataset_name='modele', json_annotation_train='/content/drive/MyDrive/layoutparser/dataset6/train/via_project_19Apr2023_15h0m_coco.json', image_path_train='/content/drive/MyDrive/layoutparser/dataset6/train', json_annotation_val='/content/drive/MyDrive/layoutparser/dataset6/val/via_project_19Apr2023_15h9m_coco.json', image_path_val='/content/drive/MyDrive/layoutparser/dataset6/val')
1861
+ [04/19 13:21:20] detectron2 INFO: Contents of args.config_file=/content/layout-model-training/config_LayoutParser_PrimaDataset.yaml:
1862
+ CUDNN_BENCHMARK: false
1863
+ DATALOADER:
1864
+ ASPECT_RATIO_GROUPING: true
1865
+ FILTER_EMPTY_ANNOTATIONS: true
1866
+ NUM_WORKERS: 4
1867
+ REPEAT_THRESHOLD: 0.0
1868
+ SAMPLER_TRAIN: TrainingSampler
1869
+ DATASETS:
1870
+ PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
1871
+ PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
1872
+ PROPOSAL_FILES_TEST: []
1873
+ PROPOSAL_FILES_TRAIN: []
1874
+ TEST:
1875
+ - prima-layout-val
1876
+ TRAIN:
1877
+ - prima-layout-train
1878
+ GLOBAL:
1879
+ HACK: 1.0
1880
+ INPUT:
1881
+ CROP:
1882
+ ENABLED: false
1883
+ SIZE:
1884
+ - 0.9
1885
+ - 0.9
1886
+ TYPE: relative_range
1887
+ FORMAT: BGR
1888
+ MASK_FORMAT: polygon
1889
+ MAX_SIZE_TEST: 1333
1890
+ MAX_SIZE_TRAIN: 1333
1891
+ MIN_SIZE_TEST: 800
1892
+ MIN_SIZE_TRAIN:
1893
+ - 640
1894
+ - 672
1895
+ - 704
1896
+ - 736
1897
+ - 768
1898
+ - 800
1899
+ MIN_SIZE_TRAIN_SAMPLING: choice
1900
+ MODEL:
1901
+ ANCHOR_GENERATOR:
1902
+ ANGLES:
1903
+ - - -90
1904
+ - 0
1905
+ - 90
1906
+ ASPECT_RATIOS:
1907
+ - - 0.5
1908
+ - 1.0
1909
+ - 2.0
1910
+ NAME: DefaultAnchorGenerator
1911
+ OFFSET: 0.0
1912
+ SIZES:
1913
+ - - 32
1914
+ - - 64
1915
+ - - 128
1916
+ - - 256
1917
+ - - 512
1918
+ BACKBONE:
1919
+ FREEZE_AT: 2
1920
+ NAME: build_resnet_fpn_backbone
1921
+ DEVICE: cuda
1922
+ FPN:
1923
+ FUSE_TYPE: sum
1924
+ IN_FEATURES:
1925
+ - res2
1926
+ - res3
1927
+ - res4
1928
+ - res5
1929
+ NORM: ''
1930
+ OUT_CHANNELS: 256
1931
+ KEYPOINT_ON: false
1932
+ LOAD_PROPOSALS: false
1933
+ MASK_ON: true
1934
+ META_ARCHITECTURE: GeneralizedRCNN
1935
+ PANOPTIC_FPN:
1936
+ COMBINE:
1937
+ ENABLED: true
1938
+ INSTANCES_CONFIDENCE_THRESH: 0.5
1939
+ OVERLAP_THRESH: 0.5
1940
+ STUFF_AREA_LIMIT: 4096
1941
+ INSTANCE_LOSS_WEIGHT: 1.0
1942
+ PIXEL_MEAN:
1943
+ - 103.53
1944
+ - 116.28
1945
+ - 123.675
1946
+ PIXEL_STD:
1947
+ - 1.0
1948
+ - 1.0
1949
+ - 1.0
1950
+ PROPOSAL_GENERATOR:
1951
+ MIN_SIZE: 0
1952
+ NAME: RPN
1953
+ RESNETS:
1954
+ DEFORM_MODULATED: false
1955
+ DEFORM_NUM_GROUPS: 1
1956
+ DEFORM_ON_PER_STAGE:
1957
+ - false
1958
+ - false
1959
+ - false
1960
+ - false
1961
+ DEPTH: 50
1962
+ NORM: FrozenBN
1963
+ NUM_GROUPS: 1
1964
+ OUT_FEATURES:
1965
+ - res2
1966
+ - res3
1967
+ - res4
1968
+ - res5
1969
+ RES2_OUT_CHANNELS: 256
1970
+ RES5_DILATION: 1
1971
+ STEM_OUT_CHANNELS: 64
1972
+ STRIDE_IN_1X1: true
1973
+ WIDTH_PER_GROUP: 64
1974
+ RETINANET:
1975
+ BBOX_REG_WEIGHTS:
1976
+ - 1.0
1977
+ - 1.0
1978
+ - 1.0
1979
+ - 1.0
1980
+ FOCAL_LOSS_ALPHA: 0.25
1981
+ FOCAL_LOSS_GAMMA: 2.0
1982
+ IN_FEATURES:
1983
+ - p3
1984
+ - p4
1985
+ - p5
1986
+ - p6
1987
+ - p7
1988
+ IOU_LABELS:
1989
+ - 0
1990
+ - -1
1991
+ - 1
1992
+ IOU_THRESHOLDS:
1993
+ - 0.4
1994
+ - 0.5
1995
+ NMS_THRESH_TEST: 0.5
1996
+ NUM_CLASSES: 80
1997
+ NUM_CONVS: 4
1998
+ PRIOR_PROB: 0.01
1999
+ SCORE_THRESH_TEST: 0.05
2000
+ SMOOTH_L1_LOSS_BETA: 0.1
2001
+ TOPK_CANDIDATES_TEST: 1000
2002
+ ROI_BOX_CASCADE_HEAD:
2003
+ BBOX_REG_WEIGHTS:
2004
+ - - 10.0
2005
+ - 10.0
2006
+ - 5.0
2007
+ - 5.0
2008
+ - - 20.0
2009
+ - 20.0
2010
+ - 10.0
2011
+ - 10.0
2012
+ - - 30.0
2013
+ - 30.0
2014
+ - 15.0
2015
+ - 15.0
2016
+ IOUS:
2017
+ - 0.5
2018
+ - 0.6
2019
+ - 0.7
2020
+ ROI_BOX_HEAD:
2021
+ BBOX_REG_WEIGHTS:
2022
+ - 10.0
2023
+ - 10.0
2024
+ - 5.0
2025
+ - 5.0
2026
+ CLS_AGNOSTIC_BBOX_REG: false
2027
+ CONV_DIM: 256
2028
+ FC_DIM: 1024
2029
+ NAME: FastRCNNConvFCHead
2030
+ NORM: ''
2031
+ NUM_CONV: 0
2032
+ NUM_FC: 2
2033
+ POOLER_RESOLUTION: 7
2034
+ POOLER_SAMPLING_RATIO: 0
2035
+ POOLER_TYPE: ROIAlignV2
2036
+ SMOOTH_L1_BETA: 0.0
2037
+ TRAIN_ON_PRED_BOXES: false
2038
+ ROI_HEADS:
2039
+ BATCH_SIZE_PER_IMAGE: 512
2040
+ IN_FEATURES:
2041
+ - p2
2042
+ - p3
2043
+ - p4
2044
+ - p5
2045
+ IOU_LABELS:
2046
+ - 0
2047
+ - 1
2048
+ IOU_THRESHOLDS:
2049
+ - 0.5
2050
+ NAME: StandardROIHeads
2051
+ NMS_THRESH_TEST: 0.5
2052
+ NUM_CLASSES: 7
2053
+ POSITIVE_FRACTION: 0.25
2054
+ PROPOSAL_APPEND_GT: true
2055
+ SCORE_THRESH_TEST: 0.05
2056
+ ROI_KEYPOINT_HEAD:
2057
+ CONV_DIMS:
2058
+ - 512
2059
+ - 512
2060
+ - 512
2061
+ - 512
2062
+ - 512
2063
+ - 512
2064
+ - 512
2065
+ - 512
2066
+ LOSS_WEIGHT: 1.0
2067
+ MIN_KEYPOINTS_PER_IMAGE: 1
2068
+ NAME: KRCNNConvDeconvUpsampleHead
2069
+ NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true
2070
+ NUM_KEYPOINTS: 17
2071
+ POOLER_RESOLUTION: 14
2072
+ POOLER_SAMPLING_RATIO: 0
2073
+ POOLER_TYPE: ROIAlignV2
2074
+ ROI_MASK_HEAD:
2075
+ CLS_AGNOSTIC_MASK: false
2076
+ CONV_DIM: 256
2077
+ NAME: MaskRCNNConvUpsampleHead
2078
+ NORM: ''
2079
+ NUM_CONV: 4
2080
+ POOLER_RESOLUTION: 14
2081
+ POOLER_SAMPLING_RATIO: 0
2082
+ POOLER_TYPE: ROIAlignV2
2083
+ RPN:
2084
+ BATCH_SIZE_PER_IMAGE: 256
2085
+ BBOX_REG_WEIGHTS:
2086
+ - 1.0
2087
+ - 1.0
2088
+ - 1.0
2089
+ - 1.0
2090
+ BOUNDARY_THRESH: -1
2091
+ HEAD_NAME: StandardRPNHead
2092
+ IN_FEATURES:
2093
+ - p2
2094
+ - p3
2095
+ - p4
2096
+ - p5
2097
+ - p6
2098
+ IOU_LABELS:
2099
+ - 0
2100
+ - -1
2101
+ - 1
2102
+ IOU_THRESHOLDS:
2103
+ - 0.3
2104
+ - 0.7
2105
+ LOSS_WEIGHT: 1.0
2106
+ NMS_THRESH: 0.7
2107
+ POSITIVE_FRACTION: 0.5
2108
+ POST_NMS_TOPK_TEST: 1000
2109
+ POST_NMS_TOPK_TRAIN: 1000
2110
+ PRE_NMS_TOPK_TEST: 1000
2111
+ PRE_NMS_TOPK_TRAIN: 2000
2112
+ SMOOTH_L1_BETA: 0.0
2113
+ SEM_SEG_HEAD:
2114
+ COMMON_STRIDE: 4
2115
+ CONVS_DIM: 128
2116
+ IGNORE_VALUE: 255
2117
+ IN_FEATURES:
2118
+ - p2
2119
+ - p3
2120
+ - p4
2121
+ - p5
2122
+ LOSS_WEIGHT: 1.0
2123
+ NAME: SemSegFPNHead
2124
+ NORM: GN
2125
+ NUM_CLASSES: 54
2126
+ WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/model_final.pth
2127
+ OUTPUT_DIR: ../outputs/prima/mask_rcnn_R_50_FPN_3x/
2128
+ SEED: -1
2129
+ SOLVER:
2130
+ BASE_LR: 0.00025
2131
+ BIAS_LR_FACTOR: 1.0
2132
+ CHECKPOINT_PERIOD: 50
2133
+ CLIP_GRADIENTS:
2134
+ CLIP_TYPE: value
2135
+ CLIP_VALUE: 1.0
2136
+ ENABLED: false
2137
+ NORM_TYPE: 2.0
2138
+ GAMMA: 0.1
2139
+ IMS_PER_BATCH: 2
2140
+ LR_SCHEDULER_NAME: WarmupMultiStepLR
2141
+ MAX_ITER: 300
2142
+ MOMENTUM: 0.9
2143
+ NESTEROV: false
2144
+ STEPS:
2145
+ - 210000
2146
+ - 250000
2147
+ WARMUP_FACTOR: 0.001
2148
+ WARMUP_ITERS: 1000
2149
+ WARMUP_METHOD: linear
2150
+ WEIGHT_DECAY: 0.0001
2151
+ WEIGHT_DECAY_BIAS: 0.0001
2152
+ WEIGHT_DECAY_NORM: 0.0
2153
+ TEST:
2154
+ AUG:
2155
+ ENABLED: false
2156
+ FLIP: true
2157
+ MAX_SIZE: 4000
2158
+ MIN_SIZES:
2159
+ - 400
2160
+ - 500
2161
+ - 600
2162
+ - 700
2163
+ - 800
2164
+ - 900
2165
+ - 1000
2166
+ - 1100
2167
+ - 1200
2168
+ DETECTIONS_PER_IMAGE: 100
2169
+ EVAL_PERIOD: 0
2170
+ EXPECTED_RESULTS: []
2171
+ KEYPOINT_OKS_SIGMAS: []
2172
+ PRECISE_BN:
2173
+ ENABLED: false
2174
+ NUM_ITER: 200
2175
+ VERSION: 2
2176
+ VIS_PERIOD: 0
2177
+
2178
+ [04/19 13:21:20] detectron2 INFO: Running with full config:
2179
+ CUDNN_BENCHMARK: False
2180
+ DATALOADER:
2181
+ ASPECT_RATIO_GROUPING: True
2182
+ FILTER_EMPTY_ANNOTATIONS: True
2183
+ NUM_WORKERS: 4
2184
+ REPEAT_THRESHOLD: 0.0
2185
+ SAMPLER_TRAIN: TrainingSampler
2186
+ DATASETS:
2187
+ PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
2188
+ PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
2189
+ PROPOSAL_FILES_TEST: ()
2190
+ PROPOSAL_FILES_TRAIN: ()
2191
+ TEST: ('modele-val',)
2192
+ TRAIN: ('modele-train',)
2193
+ GLOBAL:
2194
+ HACK: 1.0
2195
+ INPUT:
2196
+ CROP:
2197
+ ENABLED: False
2198
+ SIZE: [0.9, 0.9]
2199
+ TYPE: relative_range
2200
+ FORMAT: BGR
2201
+ MASK_FORMAT: polygon
2202
+ MAX_SIZE_TEST: 1333
2203
+ MAX_SIZE_TRAIN: 1333
2204
+ MIN_SIZE_TEST: 800
2205
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
2206
+ MIN_SIZE_TRAIN_SAMPLING: choice
2207
+ RANDOM_FLIP: horizontal
2208
+ MODEL:
2209
+ ANCHOR_GENERATOR:
2210
+ ANGLES: [[-90, 0, 90]]
2211
+ ASPECT_RATIOS: [[0.5, 1.0, 2.0]]
2212
+ NAME: DefaultAnchorGenerator
2213
+ OFFSET: 0.0
2214
+ SIZES: [[32], [64], [128], [256], [512]]
2215
+ BACKBONE:
2216
+ FREEZE_AT: 2
2217
+ NAME: build_resnet_fpn_backbone
2218
+ DEVICE: cuda
2219
+ FPN:
2220
+ FUSE_TYPE: sum
2221
+ IN_FEATURES: ['res2', 'res3', 'res4', 'res5']
2222
+ NORM:
2223
+ OUT_CHANNELS: 256
2224
+ KEYPOINT_ON: False
2225
+ LOAD_PROPOSALS: False
2226
+ MASK_ON: True
2227
+ META_ARCHITECTURE: GeneralizedRCNN
2228
+ PANOPTIC_FPN:
2229
+ COMBINE:
2230
+ ENABLED: True
2231
+ INSTANCES_CONFIDENCE_THRESH: 0.5
2232
+ OVERLAP_THRESH: 0.5
2233
+ STUFF_AREA_LIMIT: 4096
2234
+ INSTANCE_LOSS_WEIGHT: 1.0
2235
+ PIXEL_MEAN: [103.53, 116.28, 123.675]
2236
+ PIXEL_STD: [1.0, 1.0, 1.0]
2237
+ PROPOSAL_GENERATOR:
2238
+ MIN_SIZE: 0
2239
+ NAME: RPN
2240
+ RESNETS:
2241
+ DEFORM_MODULATED: False
2242
+ DEFORM_NUM_GROUPS: 1
2243
+ DEFORM_ON_PER_STAGE: [False, False, False, False]
2244
+ DEPTH: 50
2245
+ NORM: FrozenBN
2246
+ NUM_GROUPS: 1
2247
+ OUT_FEATURES: ['res2', 'res3', 'res4', 'res5']
2248
+ RES2_OUT_CHANNELS: 256
2249
+ RES5_DILATION: 1
2250
+ STEM_OUT_CHANNELS: 64
2251
+ STRIDE_IN_1X1: True
2252
+ WIDTH_PER_GROUP: 64
2253
+ RETINANET:
2254
+ BBOX_REG_LOSS_TYPE: smooth_l1
2255
+ BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0)
2256
+ FOCAL_LOSS_ALPHA: 0.25
2257
+ FOCAL_LOSS_GAMMA: 2.0
2258
+ IN_FEATURES: ['p3', 'p4', 'p5', 'p6', 'p7']
2259
+ IOU_LABELS: [0, -1, 1]
2260
+ IOU_THRESHOLDS: [0.4, 0.5]
2261
+ NMS_THRESH_TEST: 0.5
2262
+ NORM:
2263
+ NUM_CLASSES: 80
2264
+ NUM_CONVS: 4
2265
+ PRIOR_PROB: 0.01
2266
+ SCORE_THRESH_TEST: 0.05
2267
+ SMOOTH_L1_LOSS_BETA: 0.1
2268
+ TOPK_CANDIDATES_TEST: 1000
2269
+ ROI_BOX_CASCADE_HEAD:
2270
+ BBOX_REG_WEIGHTS: ([10.0, 10.0, 5.0, 5.0], [20.0, 20.0, 10.0, 10.0], [30.0, 30.0, 15.0, 15.0])
2271
+ IOUS: (0.5, 0.6, 0.7)
2272
+ ROI_BOX_HEAD:
2273
+ BBOX_REG_LOSS_TYPE: smooth_l1
2274
+ BBOX_REG_LOSS_WEIGHT: 1.0
2275
+ BBOX_REG_WEIGHTS: (10.0, 10.0, 5.0, 5.0)
2276
+ CLS_AGNOSTIC_BBOX_REG: False
2277
+ CONV_DIM: 256
2278
+ FC_DIM: 1024
2279
+ NAME: FastRCNNConvFCHead
2280
+ NORM:
2281
+ NUM_CONV: 0
2282
+ NUM_FC: 2
2283
+ POOLER_RESOLUTION: 7
2284
+ POOLER_SAMPLING_RATIO: 0
2285
+ POOLER_TYPE: ROIAlignV2
2286
+ SMOOTH_L1_BETA: 0.0
2287
+ TRAIN_ON_PRED_BOXES: False
2288
+ ROI_HEADS:
2289
+ BATCH_SIZE_PER_IMAGE: 512
2290
+ IN_FEATURES: ['p2', 'p3', 'p4', 'p5']
2291
+ IOU_LABELS: [0, 1]
2292
+ IOU_THRESHOLDS: [0.5]
2293
+ NAME: StandardROIHeads
2294
+ NMS_THRESH_TEST: 0.5
2295
+ NUM_CLASSES: 2
2296
+ POSITIVE_FRACTION: 0.25
2297
+ PROPOSAL_APPEND_GT: True
2298
+ SCORE_THRESH_TEST: 0.05
2299
+ ROI_KEYPOINT_HEAD:
2300
+ CONV_DIMS: (512, 512, 512, 512, 512, 512, 512, 512)
2301
+ LOSS_WEIGHT: 1.0
2302
+ MIN_KEYPOINTS_PER_IMAGE: 1
2303
+ NAME: KRCNNConvDeconvUpsampleHead
2304
+ NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: True
2305
+ NUM_KEYPOINTS: 17
2306
+ POOLER_RESOLUTION: 14
2307
+ POOLER_SAMPLING_RATIO: 0
2308
+ POOLER_TYPE: ROIAlignV2
2309
+ ROI_MASK_HEAD:
2310
+ CLS_AGNOSTIC_MASK: False
2311
+ CONV_DIM: 256
2312
+ NAME: MaskRCNNConvUpsampleHead
2313
+ NORM:
2314
+ NUM_CONV: 4
2315
+ POOLER_RESOLUTION: 14
2316
+ POOLER_SAMPLING_RATIO: 0
2317
+ POOLER_TYPE: ROIAlignV2
2318
+ RPN:
2319
+ BATCH_SIZE_PER_IMAGE: 256
2320
+ BBOX_REG_LOSS_TYPE: smooth_l1
2321
+ BBOX_REG_LOSS_WEIGHT: 1.0
2322
+ BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0)
2323
+ BOUNDARY_THRESH: -1
2324
+ HEAD_NAME: StandardRPNHead
2325
+ IN_FEATURES: ['p2', 'p3', 'p4', 'p5', 'p6']
2326
+ IOU_LABELS: [0, -1, 1]
2327
+ IOU_THRESHOLDS: [0.3, 0.7]
2328
+ LOSS_WEIGHT: 1.0
2329
+ NMS_THRESH: 0.7
2330
+ POSITIVE_FRACTION: 0.5
2331
+ POST_NMS_TOPK_TEST: 1000
2332
+ POST_NMS_TOPK_TRAIN: 1000
2333
+ PRE_NMS_TOPK_TEST: 1000
2334
+ PRE_NMS_TOPK_TRAIN: 2000
2335
+ SMOOTH_L1_BETA: 0.0
2336
+ SEM_SEG_HEAD:
2337
+ COMMON_STRIDE: 4
2338
+ CONVS_DIM: 128
2339
+ IGNORE_VALUE: 255
2340
+ IN_FEATURES: ['p2', 'p3', 'p4', 'p5']
2341
+ LOSS_WEIGHT: 1.0
2342
+ NAME: SemSegFPNHead
2343
+ NORM: GN
2344
+ NUM_CLASSES: 54
2345
+ WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/model_final.pth
2346
+ OUTPUT_DIR: /content/drive/MyDrive/layoutparser/modele
2347
+ SEED: -1
2348
+ SOLVER:
2349
+ AMP:
2350
+ ENABLED: False
2351
+ BASE_LR: 0.00025
2352
+ BIAS_LR_FACTOR: 1.0
2353
+ CHECKPOINT_PERIOD: 50
2354
+ CLIP_GRADIENTS:
2355
+ CLIP_TYPE: value
2356
+ CLIP_VALUE: 1.0
2357
+ ENABLED: False
2358
+ NORM_TYPE: 2.0
2359
+ GAMMA: 0.1
2360
+ IMS_PER_BATCH: 2
2361
+ LR_SCHEDULER_NAME: WarmupMultiStepLR
2362
+ MAX_ITER: 300
2363
+ MOMENTUM: 0.9
2364
+ NESTEROV: False
2365
+ REFERENCE_WORLD_SIZE: 0
2366
+ STEPS: (210000, 250000)
2367
+ WARMUP_FACTOR: 0.001
2368
+ WARMUP_ITERS: 1000
2369
+ WARMUP_METHOD: linear
2370
+ WEIGHT_DECAY: 0.0001
2371
+ WEIGHT_DECAY_BIAS: 0.0001
2372
+ WEIGHT_DECAY_NORM: 0.0
2373
+ TEST:
2374
+ AUG:
2375
+ ENABLED: False
2376
+ FLIP: True
2377
+ MAX_SIZE: 4000
2378
+ MIN_SIZES: (400, 500, 600, 700, 800, 900, 1000, 1100, 1200)
2379
+ DETECTIONS_PER_IMAGE: 100
2380
+ EVAL_PERIOD: 0
2381
+ EXPECTED_RESULTS: []
2382
+ KEYPOINT_OKS_SIGMAS: []
2383
+ PRECISE_BN:
2384
+ ENABLED: False
2385
+ NUM_ITER: 200
2386
+ VERSION: 2
2387
+ VIS_PERIOD: 0
2388
+ [04/19 13:21:20] detectron2 INFO: Full config saved to /content/drive/MyDrive/layoutparser/modele/config.yaml
2389
+ [04/19 13:21:20] d2.utils.env INFO: Using a generated random seed 20391353
2390
+ [04/19 13:21:23] d2.engine.defaults INFO: Model:
2391
+ GeneralizedRCNN(
2392
+ (backbone): FPN(
2393
+ (fpn_lateral2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
2394
+ (fpn_output2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
2395
+ (fpn_lateral3): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
2396
+ (fpn_output3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
2397
+ (fpn_lateral4): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
2398
+ (fpn_output4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
2399
+ (fpn_lateral5): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
2400
+ (fpn_output5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
2401
+ (top_block): LastLevelMaxPool()
2402
+ (bottom_up): ResNet(
2403
+ (stem): BasicStem(
2404
+ (conv1): Conv2d(
2405
+ 3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False
2406
+ (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
2407
+ )
2408
+ )
2409
+ (res2): Sequential(
2410
+ (0): BottleneckBlock(
2411
+ (shortcut): Conv2d(
2412
+ 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
2413
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
2414
+ )
2415
+ (conv1): Conv2d(
2416
+ 64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
2417
+ (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
2418
+ )
2419
+ (conv2): Conv2d(
2420
+ 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
2421
+ (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
2422
+ )
2423
+ (conv3): Conv2d(
2424
+ 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
2425
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
2426
+ )
2427
+ )
2428
+ (1): BottleneckBlock(
2429
+ (conv1): Conv2d(
2430
+ 256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
2431
+ (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
2432
+ )
2433
+ (conv2): Conv2d(
2434
+ 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
2435
+ (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
2436
+ )
2437
+ (conv3): Conv2d(
2438
+ 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
2439
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
2440
+ )
2441
+ )
2442
+ (2): BottleneckBlock(
2443
+ (conv1): Conv2d(
2444
+ 256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
2445
+ (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
2446
+ )
2447
+ (conv2): Conv2d(
2448
+ 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
2449
+ (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
2450
+ )
2451
+ (conv3): Conv2d(
2452
+ 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
2453
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
2454
+ )
2455
+ )
2456
+ )
2457
+ (res3): Sequential(
2458
+ (0): BottleneckBlock(
2459
+ (shortcut): Conv2d(
2460
+ 256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
2461
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
2462
+ )
2463
+ (conv1): Conv2d(
2464
+ 256, 128, kernel_size=(1, 1), stride=(2, 2), bias=False
2465
+ (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
2466
+ )
2467
+ (conv2): Conv2d(
2468
+ 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
2469
+ (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
2470
+ )
2471
+ (conv3): Conv2d(
2472
+ 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
2473
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
2474
+ )
2475
+ )
2476
+ (1): BottleneckBlock(
2477
+ (conv1): Conv2d(
2478
+ 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
2479
+ (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
2480
+ )
2481
+ (conv2): Conv2d(
2482
+ 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
2483
+ (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
2484
+ )
2485
+ (conv3): Conv2d(
2486
+ 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
2487
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
2488
+ )
2489
+ )
2490
+ (2): BottleneckBlock(
2491
+ (conv1): Conv2d(
2492
+ 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
2493
+ (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
2494
+ )
2495
+ (conv2): Conv2d(
2496
+ 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
2497
+ (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
2498
+ )
2499
+ (conv3): Conv2d(
2500
+ 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
2501
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
2502
+ )
2503
+ )
2504
+ (3): BottleneckBlock(
2505
+ (conv1): Conv2d(
2506
+ 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
2507
+ (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
2508
+ )
2509
+ (conv2): Conv2d(
2510
+ 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
2511
+ (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
2512
+ )
2513
+ (conv3): Conv2d(
2514
+ 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
2515
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
2516
+ )
2517
+ )
2518
+ )
2519
+ (res4): Sequential(
2520
+ (0): BottleneckBlock(
2521
+ (shortcut): Conv2d(
2522
+ 512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False
2523
+ (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
2524
+ )
2525
+ (conv1): Conv2d(
2526
+ 512, 256, kernel_size=(1, 1), stride=(2, 2), bias=False
2527
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
2528
+ )
2529
+ (conv2): Conv2d(
2530
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
2531
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
2532
+ )
2533
+ (conv3): Conv2d(
2534
+ 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
2535
+ (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
2536
+ )
2537
+ )
2538
+ (1): BottleneckBlock(
2539
+ (conv1): Conv2d(
2540
+ 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
2541
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
2542
+ )
2543
+ (conv2): Conv2d(
2544
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
2545
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
2546
+ )
2547
+ (conv3): Conv2d(
2548
+ 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
2549
+ (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
2550
+ )
2551
+ )
2552
+ (2): BottleneckBlock(
2553
+ (conv1): Conv2d(
2554
+ 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
2555
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
2556
+ )
2557
+ (conv2): Conv2d(
2558
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
2559
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
2560
+ )
2561
+ (conv3): Conv2d(
2562
+ 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
2563
+ (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
2564
+ )
2565
+ )
2566
+ (3): BottleneckBlock(
2567
+ (conv1): Conv2d(
2568
+ 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
2569
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
2570
+ )
2571
+ (conv2): Conv2d(
2572
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
2573
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
2574
+ )
2575
+ (conv3): Conv2d(
2576
+ 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
2577
+ (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
2578
+ )
2579
+ )
2580
+ (4): BottleneckBlock(
2581
+ (conv1): Conv2d(
2582
+ 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
2583
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
2584
+ )
2585
+ (conv2): Conv2d(
2586
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
2587
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
2588
+ )
2589
+ (conv3): Conv2d(
2590
+ 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
2591
+ (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
2592
+ )
2593
+ )
2594
+ (5): BottleneckBlock(
2595
+ (conv1): Conv2d(
2596
+ 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
2597
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
2598
+ )
2599
+ (conv2): Conv2d(
2600
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
2601
+ (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
2602
+ )
2603
+ (conv3): Conv2d(
2604
+ 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
2605
+ (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
2606
+ )
2607
+ )
2608
+ )
2609
+ (res5): Sequential(
2610
+ (0): BottleneckBlock(
2611
+ (shortcut): Conv2d(
2612
+ 1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False
2613
+ (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
2614
+ )
2615
+ (conv1): Conv2d(
2616
+ 1024, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
2617
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
2618
+ )
2619
+ (conv2): Conv2d(
2620
+ 512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
2621
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
2622
+ )
2623
+ (conv3): Conv2d(
2624
+ 512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
2625
+ (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
2626
+ )
2627
+ )
2628
+ (1): BottleneckBlock(
2629
+ (conv1): Conv2d(
2630
+ 2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
2631
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
2632
+ )
2633
+ (conv2): Conv2d(
2634
+ 512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
2635
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
2636
+ )
2637
+ (conv3): Conv2d(
2638
+ 512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
2639
+ (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
2640
+ )
2641
+ )
2642
+ (2): BottleneckBlock(
2643
+ (conv1): Conv2d(
2644
+ 2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
2645
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
2646
+ )
2647
+ (conv2): Conv2d(
2648
+ 512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
2649
+ (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
2650
+ )
2651
+ (conv3): Conv2d(
2652
+ 512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
2653
+ (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
2654
+ )
2655
+ )
2656
+ )
2657
+ )
2658
+ )
2659
+ (proposal_generator): RPN(
2660
+ (rpn_head): StandardRPNHead(
2661
+ (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
2662
+ (objectness_logits): Conv2d(256, 3, kernel_size=(1, 1), stride=(1, 1))
2663
+ (anchor_deltas): Conv2d(256, 12, kernel_size=(1, 1), stride=(1, 1))
2664
+ )
2665
+ (anchor_generator): DefaultAnchorGenerator(
2666
+ (cell_anchors): BufferList()
2667
+ )
2668
+ )
2669
+ (roi_heads): StandardROIHeads(
2670
+ (box_pooler): ROIPooler(
2671
+ (level_poolers): ModuleList(
2672
+ (0): ROIAlign(output_size=(7, 7), spatial_scale=0.25, sampling_ratio=0, aligned=True)
2673
+ (1): ROIAlign(output_size=(7, 7), spatial_scale=0.125, sampling_ratio=0, aligned=True)
2674
+ (2): ROIAlign(output_size=(7, 7), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
2675
+ (3): ROIAlign(output_size=(7, 7), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
2676
+ )
2677
+ )
2678
+ (box_head): FastRCNNConvFCHead(
2679
+ (flatten): Flatten(start_dim=1, end_dim=-1)
2680
+ (fc1): Linear(in_features=12544, out_features=1024, bias=True)
2681
+ (fc_relu1): ReLU()
2682
+ (fc2): Linear(in_features=1024, out_features=1024, bias=True)
2683
+ (fc_relu2): ReLU()
2684
+ )
2685
+ (box_predictor): FastRCNNOutputLayers(
2686
+ (cls_score): Linear(in_features=1024, out_features=3, bias=True)
2687
+ (bbox_pred): Linear(in_features=1024, out_features=8, bias=True)
2688
+ )
2689
+ (mask_pooler): ROIPooler(
2690
+ (level_poolers): ModuleList(
2691
+ (0): ROIAlign(output_size=(14, 14), spatial_scale=0.25, sampling_ratio=0, aligned=True)
2692
+ (1): ROIAlign(output_size=(14, 14), spatial_scale=0.125, sampling_ratio=0, aligned=True)
2693
+ (2): ROIAlign(output_size=(14, 14), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
2694
+ (3): ROIAlign(output_size=(14, 14), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
2695
+ )
2696
+ )
2697
+ (mask_head): MaskRCNNConvUpsampleHead(
2698
+ (mask_fcn1): Conv2d(
2699
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
2700
+ (activation): ReLU()
2701
+ )
2702
+ (mask_fcn2): Conv2d(
2703
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
2704
+ (activation): ReLU()
2705
+ )
2706
+ (mask_fcn3): Conv2d(
2707
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
2708
+ (activation): ReLU()
2709
+ )
2710
+ (mask_fcn4): Conv2d(
2711
+ 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
2712
+ (activation): ReLU()
2713
+ )
2714
+ (deconv): ConvTranspose2d(256, 256, kernel_size=(2, 2), stride=(2, 2))
2715
+ (deconv_relu): ReLU()
2716
+ (predictor): Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1))
2717
+ )
2718
+ )
2719
+ )
2720
+ [04/19 13:21:23] d2.data.dataset_mapper INFO: [DatasetMapper] Augmentations used in training: [ResizeShortestEdge(short_edge_length=(640, 672, 704, 736, 768, 800), max_size=1333, sample_style='choice'), RandomFlip(), RandomRotation(angle=[-90.0, 0.0])]
2721
+ [04/19 13:21:23] d2.data.datasets.coco INFO: Loaded 36 images in COCO format from /content/drive/MyDrive/layoutparser/dataset6/train/via_project_19Apr2023_15h0m_coco.json
2722
+ [04/19 13:21:23] d2.data.build INFO: Removed 6 images with no usable annotations. 30 images left.
2723
+ [04/19 13:21:23] d2.data.build INFO: Distribution of instances among all 2 categories:
2724
+ | category | #instances | category | #instances |
2725
+ |:----------:|:-------------|:----------:|:-------------|
2726
+ | | 89 | | 0 |
2727
+ | | | | |
2728
+ | total | 89 | | |
2729
+ [04/19 13:21:23] d2.data.build INFO: Using training sampler TrainingSampler
2730
+ [04/19 13:21:23] d2.data.common INFO: Serializing 30 elements to byte tensors and concatenating them all ...
2731
+ [04/19 13:21:23] d2.data.common INFO: Serialized dataset takes 0.01 MiB
2732
+ [04/19 13:21:23] d2.solver.build WARNING: SOLVER.STEPS contains values larger than SOLVER.MAX_ITER. These values will be ignored.
2733
+ [04/19 13:21:26] fvcore.common.checkpoint INFO: Loading checkpoint from /content/drive/MyDrive/layoutparser/modele/modele3_NP?/model_final.pth
2734
+ [04/19 13:21:31] d2.engine.train_loop INFO: Starting training from iteration 0
2735
+ [04/19 13:21:59] d2.utils.events INFO: eta: 0:03:57 iter: 19 total_loss: 0.5817 loss_cls: 0.122 loss_box_reg: 0.1813 loss_mask: 0.2043 loss_rpn_cls: 0.01694 loss_rpn_loc: 0.02236 time: 0.8670 data_time: 0.0615 lr: 4.9953e-06 max_mem: 4741M
2736
+ [04/19 13:22:16] d2.utils.events INFO: eta: 0:03:36 iter: 39 total_loss: 0.5271 loss_cls: 0.108 loss_box_reg: 0.1928 loss_mask: 0.1966 loss_rpn_cls: 0.01371 loss_rpn_loc: 0.0178 time: 0.8510 data_time: 0.0094 lr: 9.9902e-06 max_mem: 4741M
2737
+ [04/19 13:22:25] fvcore.common.checkpoint INFO: Saving checkpoint to /content/drive/MyDrive/layoutparser/modele/model_0000049.pth
2738
+ [04/19 13:22:35] d2.utils.events INFO: eta: 0:03:22 iter: 59 total_loss: 0.5328 loss_cls: 0.09943 loss_box_reg: 0.1768 loss_mask: 0.1878 loss_rpn_cls: 0.01652 loss_rpn_loc: 0.02977 time: 0.8703 data_time: 0.0149 lr: 1.4985e-05 max_mem: 4742M
2739
+ [04/19 13:22:53] d2.utils.events INFO: eta: 0:03:09 iter: 79 total_loss: 0.5528 loss_cls: 0.1002 loss_box_reg: 0.1706 loss_mask: 0.2053 loss_rpn_cls: 0.01738 loss_rpn_loc: 0.02357 time: 0.8795 data_time: 0.0108 lr: 1.998e-05 max_mem: 4742M
2740
+ [04/19 13:23:11] fvcore.common.checkpoint INFO: Saving checkpoint to /content/drive/MyDrive/layoutparser/modele/model_0000099.pth
2741
+ [04/19 13:23:13] d2.utils.events INFO: eta: 0:02:53 iter: 99 total_loss: 0.5248 loss_cls: 0.08265 loss_box_reg: 0.1726 loss_mask: 0.1772 loss_rpn_cls: 0.01976 loss_rpn_loc: 0.02078 time: 0.8858 data_time: 0.0114 lr: 2.4975e-05 max_mem: 4742M
2742
+ [04/19 13:23:32] d2.utils.events INFO: eta: 0:02:38 iter: 119 total_loss: 0.5286 loss_cls: 0.09827 loss_box_reg: 0.1722 loss_mask: 0.1774 loss_rpn_cls: 0.01788 loss_rpn_loc: 0.0259 time: 0.8971 data_time: 0.0096 lr: 2.997e-05 max_mem: 4742M
2743
+ [04/19 13:23:50] d2.utils.events INFO: eta: 0:02:21 iter: 139 total_loss: 0.5629 loss_cls: 0.09456 loss_box_reg: 0.1846 loss_mask: 0.1865 loss_rpn_cls: 0.02039 loss_rpn_loc: 0.02839 time: 0.9012 data_time: 0.0110 lr: 3.4965e-05 max_mem: 4742M
2744
+ [04/19 13:23:59] fvcore.common.checkpoint INFO: Saving checkpoint to /content/drive/MyDrive/layoutparser/modele/model_0000149.pth
2745
+ [04/19 13:24:10] d2.utils.events INFO: eta: 0:02:04 iter: 159 total_loss: 0.491 loss_cls: 0.09832 loss_box_reg: 0.1694 loss_mask: 0.1691 loss_rpn_cls: 0.008938 loss_rpn_loc: 0.01734 time: 0.9020 data_time: 0.0080 lr: 3.996e-05 max_mem: 4742M
2746
+ [04/19 13:24:29] d2.utils.events INFO: eta: 0:01:47 iter: 179 total_loss: 0.4756 loss_cls: 0.08483 loss_box_reg: 0.162 loss_mask: 0.1571 loss_rpn_cls: 0.01482 loss_rpn_loc: 0.03214 time: 0.9094 data_time: 0.0101 lr: 4.4955e-05 max_mem: 4742M
2747
+ [04/19 13:24:49] fvcore.common.checkpoint INFO: Saving checkpoint to /content/drive/MyDrive/layoutparser/modele/model_0000199.pth
2748
+ [04/19 13:24:50] d2.utils.events INFO: eta: 0:01:30 iter: 199 total_loss: 0.4405 loss_cls: 0.08707 loss_box_reg: 0.1718 loss_mask: 0.1673 loss_rpn_cls: 0.008687 loss_rpn_loc: 0.02504 time: 0.9157 data_time: 0.0107 lr: 4.995e-05 max_mem: 4742M
2749
+ [04/19 13:25:09] d2.utils.events INFO: eta: 0:01:12 iter: 219 total_loss: 0.4541 loss_cls: 0.08539 loss_box_reg: 0.1581 loss_mask: 0.1605 loss_rpn_cls: 0.01627 loss_rpn_loc: 0.01755 time: 0.9168 data_time: 0.0112 lr: 5.4945e-05 max_mem: 4742M
2750
+ [04/19 13:25:28] d2.utils.events INFO: eta: 0:00:54 iter: 239 total_loss: 0.4896 loss_cls: 0.09352 loss_box_reg: 0.1829 loss_mask: 0.1675 loss_rpn_cls: 0.0139 loss_rpn_loc: 0.02522 time: 0.9196 data_time: 0.0080 lr: 5.994e-05 max_mem: 4742M
2751
+ [04/19 13:25:37] fvcore.common.checkpoint INFO: Saving checkpoint to /content/drive/MyDrive/layoutparser/modele/model_0000249.pth
2752
+ [04/19 13:25:48] d2.utils.events INFO: eta: 0:00:36 iter: 259 total_loss: 0.4373 loss_cls: 0.06817 loss_box_reg: 0.1526 loss_mask: 0.1634 loss_rpn_cls: 0.0137 loss_rpn_loc: 0.02394 time: 0.9241 data_time: 0.0098 lr: 6.4935e-05 max_mem: 4742M
2753
+ [04/19 13:26:08] d2.utils.events INFO: eta: 0:00:18 iter: 279 total_loss: 0.4922 loss_cls: 0.1011 loss_box_reg: 0.1941 loss_mask: 0.1613 loss_rpn_cls: 0.01023 loss_rpn_loc: 0.03586 time: 0.9272 data_time: 0.0080 lr: 6.993e-05 max_mem: 4742M
2754
+ [04/19 13:26:28] fvcore.common.checkpoint INFO: Saving checkpoint to /content/drive/MyDrive/layoutparser/modele/model_0000299.pth
2755
+ [04/19 13:26:29] fvcore.common.checkpoint INFO: Saving checkpoint to /content/drive/MyDrive/layoutparser/modele/model_final.pth
2756
+ [04/19 13:26:31] d2.utils.events INFO: eta: 0:00:00 iter: 299 total_loss: 0.4673 loss_cls: 0.08663 loss_box_reg: 0.178 loss_mask: 0.1653 loss_rpn_cls: 0.006576 loss_rpn_loc: 0.02131 time: 0.9322 data_time: 0.0116 lr: 7.4925e-05 max_mem: 4742M
2757
+ [04/19 13:26:31] d2.engine.hooks INFO: Overall training speed: 298 iterations in 0:04:37 (0.9322 s / it)
2758
+ [04/19 13:26:31] d2.engine.hooks INFO: Total training time: 0:04:47 (0:00:09 on hooks)
metrics.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"data_time": 0.0078072735000205284, "eta_seconds": 237.39525767999226, "fast_rcnn/cls_accuracy": 0.95166015625, "fast_rcnn/false_negative": 0.3174242424242424, "fast_rcnn/fg_cls_accuracy": 0.6825757575757576, "iteration": 19, "loss_box_reg": 0.18126913160085678, "loss_cls": 0.12200355529785156, "loss_mask": 0.20430559664964676, "loss_rpn_cls": 0.016937402077019215, "loss_rpn_loc": 0.022357339970767498, "lr": 4.99525e-06, "mask_rcnn/accuracy": 0.9157851735164111, "mask_rcnn/false_negative": 0.08747882744709648, "mask_rcnn/false_positive": 0.0695743153731449, "roi_head/num_bg_samples": 451.75, "roi_head/num_fg_samples": 60.25, "rpn/num_neg_anchors": 241.0, "rpn/num_pos_anchors": 15.0, "time": 0.8478402059999723, "total_loss": 0.5817432205658406}
2
+ {"data_time": 0.00806954000006499, "eta_seconds": 216.88964089000365, "fast_rcnn/cls_accuracy": 0.958984375, "fast_rcnn/false_negative": 0.16390334811387441, "fast_rcnn/fg_cls_accuracy": 0.8360966518861256, "iteration": 39, "loss_box_reg": 0.19283011555671692, "loss_cls": 0.1080242358148098, "loss_mask": 0.19663811475038528, "loss_rpn_cls": 0.013711910229176283, "loss_rpn_loc": 0.017802692018449306, "lr": 9.99025e-06, "mask_rcnn/accuracy": 0.9198041697517024, "mask_rcnn/false_negative": 0.06658453429298014, "mask_rcnn/false_positive": 0.0970188841812121, "roi_head/num_bg_samples": 457.75, "roi_head/num_fg_samples": 54.25, "rpn/num_neg_anchors": 246.5, "rpn/num_pos_anchors": 9.5, "time": 0.833926538500009, "total_loss": 0.5270909374230541}
3
+ {"data_time": 0.00786942999997109, "eta_seconds": 202.049228399992, "fast_rcnn/cls_accuracy": 0.96044921875, "fast_rcnn/false_negative": 0.17474278128111514, "fast_rcnn/fg_cls_accuracy": 0.8252572187188849, "iteration": 59, "loss_box_reg": 0.17683134227991104, "loss_cls": 0.09942953288555145, "loss_mask": 0.18784072250127792, "loss_rpn_cls": 0.016522271558642387, "loss_rpn_loc": 0.029772663488984108, "lr": 1.4985249999999999e-05, "mask_rcnn/accuracy": 0.9230181719833241, "mask_rcnn/false_negative": 0.0657658037432446, "mask_rcnn/false_positive": 0.0900701805017563, "roi_head/num_bg_samples": 448.5, "roi_head/num_fg_samples": 63.5, "rpn/num_neg_anchors": 236.75, "rpn/num_pos_anchors": 19.25, "time": 0.9238360184999692, "total_loss": 0.5328234452754259}
4
+ {"data_time": 0.008662080000021888, "eta_seconds": 189.94938489998844, "fast_rcnn/cls_accuracy": 0.95556640625, "fast_rcnn/false_negative": 0.18949298469387754, "fast_rcnn/fg_cls_accuracy": 0.8105070153061225, "iteration": 79, "loss_box_reg": 0.1706439107656479, "loss_cls": 0.10022062435746193, "loss_mask": 0.2053210288286209, "loss_rpn_cls": 0.01738046295940876, "loss_rpn_loc": 0.023568041622638702, "lr": 1.998025e-05, "mask_rcnn/accuracy": 0.9150773466560775, "mask_rcnn/false_negative": 0.07122972866131304, "mask_rcnn/false_positive": 0.09154645211619379, "roi_head/num_bg_samples": 449.25, "roi_head/num_fg_samples": 62.75, "rpn/num_neg_anchors": 240.25, "rpn/num_pos_anchors": 15.75, "time": 0.8898190154999952, "total_loss": 0.5527677149511874}
5
+ {"data_time": 0.00794200899997577, "eta_seconds": 173.0306518999953, "fast_rcnn/cls_accuracy": 0.96337890625, "fast_rcnn/false_negative": 0.16227766227766227, "fast_rcnn/fg_cls_accuracy": 0.8377223377223377, "iteration": 99, "loss_box_reg": 0.1726074069738388, "loss_cls": 0.08265357092022896, "loss_mask": 0.17723622918128967, "loss_rpn_cls": 0.019758455455303192, "loss_rpn_loc": 0.020779786631464958, "lr": 2.497525e-05, "mask_rcnn/accuracy": 0.926530693319756, "mask_rcnn/false_negative": 0.060582644882807374, "mask_rcnn/false_positive": 0.08944657671381483, "roi_head/num_bg_samples": 455.25, "roi_head/num_fg_samples": 56.75, "rpn/num_neg_anchors": 241.0, "rpn/num_pos_anchors": 15.0, "time": 0.8802101579999544, "total_loss": 0.5247725388035178}
6
+ {"data_time": 0.008146928499968453, "eta_seconds": 158.05110491999926, "fast_rcnn/cls_accuracy": 0.9560546875, "fast_rcnn/false_negative": 0.17490097977902858, "fast_rcnn/fg_cls_accuracy": 0.8250990202209715, "iteration": 119, "loss_box_reg": 0.1722310408949852, "loss_cls": 0.09827171638607979, "loss_mask": 0.17743538320064545, "loss_rpn_cls": 0.01788422279059887, "loss_rpn_loc": 0.02590081002563238, "lr": 2.997025e-05, "mask_rcnn/accuracy": 0.9272291260401985, "mask_rcnn/false_negative": 0.05649131234239554, "mask_rcnn/false_positive": 0.08877379884621533, "roi_head/num_bg_samples": 445.5, "roi_head/num_fg_samples": 66.5, "rpn/num_neg_anchors": 238.25, "rpn/num_pos_anchors": 17.75, "time": 0.9440659295000273, "total_loss": 0.5285513289272785}
7
+ {"data_time": 0.008035532000008061, "eta_seconds": 141.67043927999657, "fast_rcnn/cls_accuracy": 0.96142578125, "fast_rcnn/false_negative": 0.16287878787878787, "fast_rcnn/fg_cls_accuracy": 0.8371212121212122, "iteration": 139, "loss_box_reg": 0.18458272516727448, "loss_cls": 0.09455696865916252, "loss_mask": 0.18651333451271057, "loss_rpn_cls": 0.020386052317917347, "loss_rpn_loc": 0.02839471399784088, "lr": 3.496525e-05, "mask_rcnn/accuracy": 0.9227865388579675, "mask_rcnn/false_negative": 0.07823887426949008, "mask_rcnn/false_positive": 0.07714565725517517, "roi_head/num_bg_samples": 446.5, "roi_head/num_fg_samples": 65.5, "rpn/num_neg_anchors": 238.25, "rpn/num_pos_anchors": 17.75, "time": 0.9290176410000299, "total_loss": 0.5628998675383627}
8
+ {"data_time": 0.007225867999977709, "eta_seconds": 124.62774071999547, "fast_rcnn/cls_accuracy": 0.96044921875, "fast_rcnn/false_negative": 0.1421979510625688, "fast_rcnn/fg_cls_accuracy": 0.8578020489374312, "iteration": 159, "loss_box_reg": 0.1694139465689659, "loss_cls": 0.0983157642185688, "loss_mask": 0.1690504029393196, "loss_rpn_cls": 0.008938258048146963, "loss_rpn_loc": 0.017336225137114525, "lr": 3.996025e-05, "mask_rcnn/accuracy": 0.9304054076088729, "mask_rcnn/false_negative": 0.05453408259940976, "mask_rcnn/false_positive": 0.09687290684287767, "roi_head/num_bg_samples": 445.25, "roi_head/num_fg_samples": 66.75, "rpn/num_neg_anchors": 241.5, "rpn/num_pos_anchors": 14.5, "time": 0.9201212560000158, "total_loss": 0.4909819355234504}
9
+ {"data_time": 0.00790757049998092, "eta_seconds": 107.98438782000176, "fast_rcnn/cls_accuracy": 0.9638671875, "fast_rcnn/false_negative": 0.14458689458689458, "fast_rcnn/fg_cls_accuracy": 0.8554131054131053, "iteration": 179, "loss_box_reg": 0.16203460097312927, "loss_cls": 0.08482548221945763, "loss_mask": 0.15712527930736542, "loss_rpn_cls": 0.014815961476415396, "loss_rpn_loc": 0.03214004077017307, "lr": 4.4955249999999996e-05, "mask_rcnn/accuracy": 0.9360310090632289, "mask_rcnn/false_negative": 0.052590317311748784, "mask_rcnn/false_positive": 0.07957992414234528, "roi_head/num_bg_samples": 450.25, "roi_head/num_fg_samples": 61.75, "rpn/num_neg_anchors": 234.75, "rpn/num_pos_anchors": 21.25, "time": 0.9635756369999626, "total_loss": 0.4756494527682662}
10
+ {"data_time": 0.0086770730000012, "eta_seconds": 90.48390140000038, "fast_rcnn/cls_accuracy": 0.96484375, "fast_rcnn/false_negative": 0.1505813953488372, "fast_rcnn/fg_cls_accuracy": 0.8494186046511627, "iteration": 199, "loss_box_reg": 0.17175166308879852, "loss_cls": 0.08706623315811157, "loss_mask": 0.16731856018304825, "loss_rpn_cls": 0.008686745539307594, "loss_rpn_loc": 0.02504018973559141, "lr": 4.995025e-05, "mask_rcnn/accuracy": 0.9339812504672198, "mask_rcnn/false_negative": 0.05094937251124136, "mask_rcnn/false_positive": 0.08033686683134766, "roi_head/num_bg_samples": 440.25, "roi_head/num_fg_samples": 71.75, "rpn/num_neg_anchors": 237.25, "rpn/num_pos_anchors": 18.75, "time": 0.9430582679999588, "total_loss": 0.44054083712399006}
11
+ {"data_time": 0.008456396499980201, "eta_seconds": 72.20415547999892, "fast_rcnn/cls_accuracy": 0.96435546875, "fast_rcnn/false_negative": 0.1619129207821004, "fast_rcnn/fg_cls_accuracy": 0.8380870792178996, "iteration": 219, "loss_box_reg": 0.15810220688581467, "loss_cls": 0.0853872038424015, "loss_mask": 0.16054382175207138, "loss_rpn_cls": 0.0162694756872952, "loss_rpn_loc": 0.017554521560668945, "lr": 5.4945249999999994e-05, "mask_rcnn/accuracy": 0.9320155062452881, "mask_rcnn/false_negative": 0.04592440045344945, "mask_rcnn/false_positive": 0.0795499642582482, "roi_head/num_bg_samples": 451.5, "roi_head/num_fg_samples": 60.5, "rpn/num_neg_anchors": 242.5, "rpn/num_pos_anchors": 13.5, "time": 0.8711087875000203, "total_loss": 0.45414171810261905}
12
+ {"data_time": 0.007589212500022313, "eta_seconds": 54.58721795999736, "fast_rcnn/cls_accuracy": 0.95849609375, "fast_rcnn/false_negative": 0.16044207317073172, "fast_rcnn/fg_cls_accuracy": 0.8395579268292683, "iteration": 239, "loss_box_reg": 0.1828964427113533, "loss_cls": 0.09351714327931404, "loss_mask": 0.16754969954490662, "loss_rpn_cls": 0.013895321637392044, "loss_rpn_loc": 0.025216294452548027, "lr": 5.994025e-05, "mask_rcnn/accuracy": 0.9330968072439287, "mask_rcnn/false_negative": 0.06683586210006436, "mask_rcnn/false_positive": 0.07417598373963799, "roi_head/num_bg_samples": 444.5, "roi_head/num_fg_samples": 67.5, "rpn/num_neg_anchors": 236.75, "rpn/num_pos_anchors": 19.25, "time": 0.9715423750000127, "total_loss": 0.48956847935914993}
13
+ {"data_time": 0.007639148999999179, "eta_seconds": 36.52443835999975, "fast_rcnn/cls_accuracy": 0.97265625, "fast_rcnn/false_negative": 0.13006756756756757, "fast_rcnn/fg_cls_accuracy": 0.8699324324324325, "iteration": 259, "loss_box_reg": 0.15263817459344864, "loss_cls": 0.06817140802741051, "loss_mask": 0.16339514404535294, "loss_rpn_cls": 0.013702766969799995, "loss_rpn_loc": 0.02394229080528021, "lr": 6.493524999999999e-05, "mask_rcnn/accuracy": 0.9331995923664416, "mask_rcnn/false_negative": 0.06182471100588811, "mask_rcnn/false_positive": 0.07560936337703598, "roi_head/num_bg_samples": 456.0, "roi_head/num_fg_samples": 56.0, "rpn/num_neg_anchors": 237.25, "rpn/num_pos_anchors": 18.75, "time": 0.9697470364999958, "total_loss": 0.4373055868782103}
14
+ {"data_time": 0.006967480000014348, "eta_seconds": 18.328599830000485, "fast_rcnn/cls_accuracy": 0.95849609375, "fast_rcnn/false_negative": 0.15975460122699386, "fast_rcnn/fg_cls_accuracy": 0.8402453987730061, "iteration": 279, "loss_box_reg": 0.19406820833683014, "loss_cls": 0.10113400965929031, "loss_mask": 0.16126281768083572, "loss_rpn_cls": 0.010230929590761662, "loss_rpn_loc": 0.03586099483072758, "lr": 6.993025000000002e-05, "mask_rcnn/accuracy": 0.9344176832287108, "mask_rcnn/false_negative": 0.05820550465518141, "mask_rcnn/false_positive": 0.07525972862418362, "roi_head/num_bg_samples": 439.25, "roi_head/num_fg_samples": 72.75, "rpn/num_neg_anchors": 232.25, "rpn/num_pos_anchors": 23.75, "time": 0.9761503915000276, "total_loss": 0.49223250965587795}
15
+ {"data_time": 0.006742446499970356, "eta_seconds": 0.0, "fast_rcnn/cls_accuracy": 0.96240234375, "fast_rcnn/false_negative": 0.14442586399108137, "fast_rcnn/fg_cls_accuracy": 0.8555741360089186, "iteration": 299, "loss_box_reg": 0.177964448928833, "loss_cls": 0.08662557601928711, "loss_mask": 0.16527117043733597, "loss_rpn_cls": 0.00657613156363368, "loss_rpn_loc": 0.02130951825529337, "lr": 7.492525e-05, "mask_rcnn/accuracy": 0.9326858258393901, "mask_rcnn/false_negative": 0.05731613109281186, "mask_rcnn/false_positive": 0.07353323320056379, "roi_head/num_bg_samples": 439.5, "roi_head/num_fg_samples": 72.5, "rpn/num_neg_anchors": 238.75, "rpn/num_pos_anchors": 17.25, "time": 0.9941317265000293, "total_loss": 0.467316235328326}
model_final.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00d22a9f036ec1348f75c186c06bbe6ad0b450fd4613f24f61bcd531426ccdd1
3
+ size 351071593