LightHuBERT

LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT

Authors: Rui Wang, Qibing Bai, Junyi Ao, Long Zhou, Zhixiang Xiong, Zhihua Wei, Yu Zhang, Tom Ko and Haizhou Li

| Github | Huggingface |

The authors' PyTorch implementation and pre-trained models of LightHuBERT.

Pre-Trained Models

Model Pre-Training Dataset Download Link
LightHuBERT Base 960 hrs LibriSpeech huggingface: lighthubert/lighthubert_base.pt
LightHuBERT Small 960 hrs LibriSpeech huggingface: lighthubert/lighthubert_small.pt
LightHuBERT Stage 1 960 hrs LibriSpeech huggingface: lighthubert/lighthubert_stage1.pt

Load Pre-Trained Models for Inference

import torch
from lighthubert import LightHuBERT, LightHuBERTConfig

wav_input_16khz = torch.randn(1,10000).cuda()

# load the pre-trained checkpoints
checkpoint = torch.load('/path/to/lighthubert.pt')
cfg = LightHuBERTConfig(checkpoint['cfg']['model'])
cfg.supernet_type = 'base'
model = LightHuBERT(cfg)
model = model.cuda()
model = model.eval()
print(model.load_state_dict(checkpoint['model'], strict=False))

# (optional) set a subnet
subnet = model.supernet.sample_subnet()
model.set_sample_config(subnet)
params = model.calc_sampled_param_num()
print(f"subnet (Params {params / 1e6:.0f}M) | {subnet}")

# extract the the representation of last layer
rep = model.extract_features(wav_input_16khz)[0]

# extract the the representation of each layer
hs = model.extract_features(wav_input_16khz, ret_hs=True)[0]

print(f"Representation at bottom hidden states: {torch.allclose(rep, hs[-1])}")

Profiling LightHuBERT

As mentioned in Profiling Tool for SLT2022 SUPERB Challenge, we profiling the lighthubert in s3prl.

cd DeepSpeed
# lighthubert_small
python testing/s3prl_profiling_test.py -u lighthubert_small --libri_root "libri_root"
# lighthubert_base
python testing/s3prl_profiling_test.py -u lighthubert_base --libri_root "libri_root"
# lighthubert_stage1
python testing/s3prl_profiling_test.py -u lighthubert_stage1 --libri_root "libri_root"

Reference

If you find our work is useful in your research, please cite the following paper:

@article{wang2022lighthubert,
  title={{LightHuBERT}: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit {BERT}},
  author={Rui Wang and Qibing Bai and Junyi Ao and Long Zhou and Zhixiang Xiong and Zhihua Wei and Yu Zhang and Tom Ko and Haizhou Li},
  journal={arXiv preprint arXiv:2203.15610},
  year={2022}
}

Contact Information

For help or issues using LightHuBERT models, please submit a GitHub issue.

For other communications related to LightHuBERT, please contact Rui Wang ([email protected]).

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Datasets used to train mechanicalsea/lighthubert