metadata
language:
- en
license: llama3
tags:
- Llama-3
- instruct
- finetune
- chatml
- gpt4
- synthetic data
- distillation
- function calling
- json mode
- axolotl
- roleplaying
- chat
- reasoning
- r1
- vllm
- mlx
- mlx-my-repo
base_model: NousResearch/DeepHermes-3-Llama-3-8B-Preview
widget:
- example_title: Hermes 3
messages:
- role: system
content: >-
You are a sentient, superintelligent artificial general intelligence,
here to teach and assist me.
- role: user
content: What is the meaning of life?
library_name: transformers
model-index:
- name: DeepHermes-3-Llama-3.1-8B
results: []
maxrubin629/DeepHermes-3-Llama-3-8B-Preview-Q2-mlx
The Model maxrubin629/DeepHermes-3-Llama-3-8B-Preview-Q2-mlx was converted to MLX format from NousResearch/DeepHermes-3-Llama-3-8B-Preview using mlx-lm version 0.20.5.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("maxrubin629/DeepHermes-3-Llama-3-8B-Preview-Q2-mlx")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)