bert-sst2-sentiment / README.md
mavinsao's picture
Update README.md
8213c7f verified
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: bert-sst2-sentiment
    results: []
datasets:
  - stanfordnlp/sst2
language:
  - en
base_model:
  - google-bert/bert-base-uncased
pipeline_tag: text-classification

bert-sst2-sentiment

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2764
  • Accuracy: 0.9197
  • F1: 0.9197
  • Precision: 0.9201
  • Recall: 0.9197

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.1654 1.0 1053 0.2157 0.9243 0.9243 0.9247 0.9243
0.099 2.0 2106 0.2533 0.9197 0.9197 0.9197 0.9197
0.0779 3.0 3159 0.2764 0.9197 0.9197 0.9201 0.9197

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.2.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.13.3