|
--- |
|
library_name: transformers |
|
model_name: Vikhr-Qwen-2.5-0.5b-Instruct |
|
base_model: |
|
- Qwen/Qwen2.5-0.5B-Instruct |
|
language: |
|
- ru |
|
- en |
|
license: apache-2.0 |
|
datasets: |
|
- Vikhrmodels/GrandMaster-PRO-MAX |
|
--- |
|
|
|
# 💨📟 Vikhr-Qwen-2.5-0.5B-Instruct |
|
|
|
#### RU |
|
|
|
Инструктивная модель на основе **Qwen-2.5-0.5B-Instruct**, обученная на русскоязычном датасете **GrandMaster-PRO-MAX**. В **4 раза эффективнее** базовой модели, и идеально подходит для запуска на слабых мобильных устройствах. |
|
|
|
#### EN |
|
|
|
Instructive model based on **Qwen-2.5-0.5B-Instruct**, trained on the Russian-language dataset **GrandMaster-PRO-MAX**. It is **4 times more efficient** than the base model, making it perfect for deployment on low-end mobile devices. |
|
|
|
## GGUF |
|
|
|
- [Vikhrmodels/Vikhr-Qwen-2.5-0.5B-instruct-GGUF](https://huggingface.co/Vikhrmodels/Vikhr-Qwen-2.5-0.5B-instruct-GGUF) |
|
|
|
## Особенности: |
|
|
|
- 📚 Основа / Base: [Qwen-2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen-2.5-0.5B-Instruct) |
|
- 🇷🇺 Специализация / Specialization: **RU** |
|
- 💾 Датасет / Dataset: [GrandMaster-PRO-MAX](https://huggingface.co/datasets/Vikhrmodels/GrandMaster-PRO-MAX) |
|
|
|
## Попробовать / Try now: |
|
|
|
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1bJpLmplDGkMbfOLO2CH6IO-2uUZEaknf?usp=sharing) |
|
|
|
## Описание: |
|
|
|
#### RU |
|
|
|
**Vikhr-Qwen-2.5-0.5B-instruct** — это компактная языковая модель, обученная на датасете **GrandMaster-PRO-MAX**, специально доученная для обработки русского языка. Эффективность модели **в 4 раза** превышает базовую модель, а её размер составляет **1ГБ** , что делает её отличным выбором для запуска на слабых мобильных устройствах. |
|
|
|
#### EN |
|
|
|
**Vikhr-Qwen-2.5-0.5B-instruct** is a compact language model trained on the **GrandMaster-PRO-MAX** dataset, specifically designed for processing the Russian language. Its efficiency is **4 times** higher than the base model, and its size is **1GB**, making it an excellent choice for deployment on low-end mobile devices. |
|
|
|
## Обучение / Train: |
|
|
|
#### RU |
|
|
|
Для создания **Vikhr-Qwen-2.5-0.5B-Instruct** использовался метод SFT (Supervised Fine-Tuning). Мы обучили модель на синтетическом датасете **Vikhrmodels/GrandMaster-PRO-MAX** (150k инструкций) с поддержкой CoT (Chain-Of-Thought), используя промпты для GPT-4-turbo. |
|
|
|
#### EN |
|
|
|
To create **Vikhr-Qwen-2.5-0.5B-Instruct**, the SFT (Supervised Fine-Tuning) method was used. We trained the model on a synthetic dataset **Vikhrmodels/GrandMaster-PRO-MAX** (150k instructions) with support for CoT (Chain-Of-Thought), utilizing prompts for GPT-4-turbo. |
|
|
|
## Пример кода для запуска / Sample code to run: |
|
|
|
**Рекомендуемая температура для генерации: 0.3** / **Recommended generation temperature: 0.3**. |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
# Загрузка модели и токенизатора |
|
model_name = "Vikhrmodels/Vikhr-Qwen-2.5-0.5B-Instruct" |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
# Подготовка входного текста |
|
input_text = "Напиши очень краткую рецензию о книге Гарри Поттер." |
|
|
|
# Токенизация и генерация текста |
|
input_ids = tokenizer.encode(input_text, return_tensors="pt") |
|
output = model.generate( |
|
input_ids, |
|
max_length=1512, |
|
temperature=0.3, |
|
num_return_sequences=1, |
|
no_repeat_ngram_size=2, |
|
top_k=50, |
|
top_p=0.95, |
|
) |
|
|
|
# Декодирование и вывод результата |
|
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) |
|
print(generated_text) |
|
``` |
|
|
|
#### Ответ модели / Model response: |
|
|
|
>Книга "Гарри Поттер" – это серия книг, написанных британским писателем Джоан Роулинг. Это одно из самых известных произведений в мире литературы и популярного детского творчества. |
|
> |
|
>**Основные черты серии:** |
|
> |
|
>1. **Сюжет:** События разворачиваются вокруг мальчика по имени Гарри Поттер, который учится в Школе волшебства и философии в Университете Хогвартс. Он сталкивается с различными препятствиями, включая борьбу со злом, поиск друзей и самопознание. |
|
> |
|
>2. **Персонажи:** В книге представлены множество персонажей, каждый из которых имеет свои уникальные черты характера, мотивации и прошлое. Главный герой, Гарри Поттер, является примером доброго и смелого человека, а также необычной личностью. |
|
> |
|
>3. **Темы и идеи:** Рассказы книги затрагивают темы любви, дружбы, справедливости, морали, человеческой неповиновенности и важности обучения через приключения. |
|
> |
|
>4. **История и развитие персонажей:** Через события и взаимодействие с другими персонажами книга исследует глубокие психологические и философские вопросы. |
|
> |
|
>5. **Влияние на культуру:** "Гарри Поттер" оказал огромное влияние на мировую литературу, превратившись в культовый жанр и символ знаний и мудрости. |
|
> |
|
>6. **Доступность:** Книги серии доступны для широкой аудитории и пользуются большим спросом, что делает их популярным выбором среди читателей всех возрастов. |
|
> |
|
>7. **Развитие жанра:** Несмотря на то что "Гарри Поттер" является частью серии, он продолжает быть любимым и актуальным, так как продолжает удивлять читателей новыми историями и персонажами. |
|
> |
|
>Эта серия книг остается одной из самых значительных и влиятельных в истории литературы, оказав влияние на развитие мировой культуры и образование. |
|
|
|
|
|
### Авторы / Authors |
|
|
|
- Sergei Bratchikov, [NLP Wanderer](https://t.me/nlpwanderer), [Vikhr Team](https://t.me/vikhrlabs) |
|
- Nikolay Kompanets, [LakoMoor](https://t.me/lakomoor), [Vikhr Team](https://t.me/vikhrlabs) |
|
- Konstantin Korolev, [Vikhr Team](https://t.me/vikhrlabs) |
|
- Aleksandr Nikolich, [Vikhr Team](https://t.me/vikhrlabs) |
|
|
|
``` |
|
@article{nikolich2024vikhr, |
|
title={Vikhr: The Family of Open-Source Instruction-Tuned Large Language Models for Russian}, |
|
author={Aleksandr Nikolich and Konstantin Korolev and Sergey Bratchikov and Nikolay Kompanets and Artem Shelmanov}, |
|
journal={arXiv preprint arXiv:2405.13929}, |
|
year={2024}, |
|
url={https://arxiv.org/pdf/2405.13929} |
|
} |
|
``` |