matthieulel's picture
End of training
5ee88f5 verified
metadata
license: apache-2.0
base_model: facebook/dinov2-small-imagenet1k-1-layer
tags:
  - image-classification
  - vision
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: dinov2-small-imagenet1k-1-layer-finetuned-galaxy10-decals
    results: []

dinov2-small-imagenet1k-1-layer-finetuned-galaxy10-decals

This model is a fine-tuned version of facebook/dinov2-small-imagenet1k-1-layer on the matthieulel/galaxy10_decals dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5373
  • Accuracy: 0.8563
  • Precision: 0.8536
  • Recall: 0.8563
  • F1: 0.8543

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.0027 0.99 62 0.8262 0.7080 0.7231 0.7080 0.7017
0.8374 2.0 125 0.6129 0.7948 0.7960 0.7948 0.7899
0.7753 2.99 187 0.6555 0.7892 0.7921 0.7892 0.7787
0.7165 4.0 250 0.5862 0.8005 0.8053 0.8005 0.7970
0.6477 4.99 312 0.6183 0.7965 0.8119 0.7965 0.7985
0.6892 6.0 375 0.5310 0.8247 0.8275 0.8247 0.8195
0.6171 6.99 437 0.5678 0.8083 0.8157 0.8083 0.8022
0.55 8.0 500 0.4961 0.8326 0.8353 0.8326 0.8316
0.5615 8.99 562 0.5033 0.8309 0.8312 0.8309 0.8274
0.5107 10.0 625 0.5162 0.8191 0.8164 0.8191 0.8152
0.5237 10.99 687 0.4790 0.8422 0.8452 0.8422 0.8381
0.4954 12.0 750 0.4782 0.8422 0.8430 0.8422 0.8373
0.4887 12.99 812 0.4689 0.8371 0.8395 0.8371 0.8358
0.4629 14.0 875 0.4541 0.8523 0.8500 0.8523 0.8502
0.4486 14.99 937 0.4755 0.8405 0.8400 0.8405 0.8394
0.4361 16.0 1000 0.4763 0.8371 0.8392 0.8371 0.8370
0.3833 16.99 1062 0.4982 0.8416 0.8429 0.8416 0.8396
0.3788 18.0 1125 0.5632 0.8292 0.8365 0.8292 0.8267
0.3722 18.99 1187 0.5162 0.8388 0.8364 0.8388 0.8357
0.3467 20.0 1250 0.5125 0.8399 0.8357 0.8399 0.8342
0.3518 20.99 1312 0.5569 0.8309 0.8327 0.8309 0.8276
0.3432 22.0 1375 0.5032 0.8484 0.8451 0.8484 0.8454
0.3067 22.99 1437 0.5246 0.8433 0.8462 0.8433 0.8433
0.2923 24.0 1500 0.5363 0.8467 0.8482 0.8467 0.8464
0.303 24.99 1562 0.5435 0.8484 0.8453 0.8484 0.8457
0.2523 26.0 1625 0.5500 0.8444 0.8422 0.8444 0.8419
0.2523 26.99 1687 0.5369 0.8529 0.8533 0.8529 0.8529
0.262 28.0 1750 0.5373 0.8563 0.8536 0.8563 0.8543
0.232 28.99 1812 0.5384 0.8529 0.8509 0.8529 0.8516
0.2278 29.76 1860 0.5429 0.8512 0.8489 0.8512 0.8495

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1