File size: 9,206 Bytes
7c07f27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "93f5db97-0d94-4464-9891-0ebfe519d534",
   "metadata": {},
   "outputs": [],
   "source": [
    "#!pip install -U bitsandbytes\n",
    "#!pip install -U transformers\n",
    "#!pip install -U accelerate\n",
    "#!pip install -U peft\n",
    "#!pip install -U trl"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1fd5f7f5-c053-4ecd-a0d4-b7a12ee32136",
   "metadata": {},
   "outputs": [],
   "source": [
    "#!huggingface-cli whoami"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5780dde2-c61e-464b-91aa-e68301124b6e",
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import pandas as pd\n",
    "import os\n",
    "from tqdm import tqdm\n",
    "import bitsandbytes as bnb\n",
    "import torch\n",
    "import torch.nn as nn\n",
    "import transformers\n",
    "from datasets import Dataset\n",
    "from peft import LoraConfig, PeftConfig\n",
    "from trl import SFTTrainer\n",
    "from trl import setup_chat_format\n",
    "from transformers import (AutoModelForCausalLM, \n",
    "                          AutoTokenizer, \n",
    "                          BitsAndBytesConfig, \n",
    "                          TrainingArguments, \n",
    "                          pipeline, \n",
    "                          logging)\n",
    "from sklearn.metrics import (accuracy_score, \n",
    "                             classification_report, \n",
    "                             confusion_matrix)\n",
    "from sklearn.model_selection import train_test_split"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "84b29425-b5ad-4852-b9e2-6887eece0de8",
   "metadata": {},
   "outputs": [],
   "source": [
    "from datasets import load_dataset\n",
    "\n",
    "df = pd.read_parquet(\"hf://datasets/tdavidson/hate_speech_offensive/data/train-00000-of-00001.parquet\")\n",
    "df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b7395daa-b933-4204-854c-472548343f31",
   "metadata": {},
   "outputs": [],
   "source": [
    "df = df.rename(columns={\"class\": \"label\",\"tweet\": \"text\"}).sample(frac=1, random_state=85).reset_index(drop=True).head(3000)\n",
    "df.loc[:,'label'] = df.loc[:,'label'].replace(0,'Hate')\n",
    "df.loc[:,'label'] = df.loc[:,'label'].replace(1,'Offensive')\n",
    "df.loc[:,'label'] = df.loc[:,'label'].replace(2,'Normal')\n",
    "# Split the DataFrame\n",
    "train_size = 0.8\n",
    "eval_size = 0.1\n",
    "\n",
    "# Calculate sizes\n",
    "train_end = int(train_size * len(df))\n",
    "eval_end = train_end + int(eval_size * len(df))\n",
    "\n",
    "# Split the data\n",
    "X_train = df[:train_end]\n",
    "X_eval = df[train_end:eval_end]\n",
    "X_test = df[eval_end:]\n",
    "# Define the prompt generation functions\n",
    "def generate_prompt(data_point):\n",
    "    return f\"\"\"\n",
    "            Classify the text into Hatespeech, Offensive, Normal and return the answer as the corresponding label.\n",
    "text: {data_point[\"text\"]}\n",
    "label: {data_point[\"label\"]}\"\"\".strip()\n",
    "\n",
    "def generate_test_prompt(data_point):\n",
    "    return f\"\"\"\n",
    "            Classify the text into Hatespeech, Offensive, Normal and return the answer as the corresponding label.\n",
    "            text: {data_point[\"text\"]}\n",
    "            label: \"\"\".strip()\n",
    "\n",
    "# Generate prompts for training and evaluation data\n",
    "X_train.loc[:,'text'] = X_train.apply(generate_prompt, axis=1)\n",
    "X_eval.loc[:,'text'] = X_eval.apply(generate_prompt, axis=1)\n",
    "\n",
    "# Generate test prompts and extract true labels\n",
    "y_true = X_test.loc[:,'label']\n",
    "X_test = pd.DataFrame(X_test.apply(generate_test_prompt, axis=1), columns=[\"text\"])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bc18edca-e02b-4a32-8cc1-7d83f00bdba5",
   "metadata": {},
   "outputs": [],
   "source": [
    "X_train.label.value_counts()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "52d5ccf5-7669-447f-8a90-43cbb7e8e337",
   "metadata": {},
   "outputs": [],
   "source": [
    "train_data = Dataset.from_pandas(X_train[[\"text\"]])\n",
    "eval_data = Dataset.from_pandas(X_eval[[\"text\"]])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f7732c58-e8c6-436b-810d-40abd4f593ab",
   "metadata": {},
   "outputs": [],
   "source": [
    "train_data['text'][2000]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0f15e59f-9e50-48f1-b6f5-d6dc46db623f",
   "metadata": {},
   "outputs": [],
   "source": [
    "#CHANGE MODEL HERE#\n",
    "base_model_name = \"meta-llama/Llama-3.2-3B-Instruct\"\n",
    "\n",
    "bnb_config = BitsAndBytesConfig(\n",
    "    load_in_4bit=True,\n",
    "    bnb_4bit_use_double_quant=False,\n",
    "    bnb_4bit_quant_type=\"nf4\",\n",
    "    bnb_4bit_compute_dtype=\"float16\",\n",
    ")\n",
    "\n",
    "model = AutoModelForCausalLM.from_pretrained(\n",
    "    base_model_name,\n",
    "    device_map=\"auto\",\n",
    "    torch_dtype=\"float16\",\n",
    "    quantization_config=bnb_config, \n",
    ")\n",
    "\n",
    "model.config.use_cache = False\n",
    "model.config.pretraining_tp = 1\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(base_model_name)\n",
    "\n",
    "tokenizer.pad_token_id = tokenizer.eos_token_id"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "97ccf698-09de-4423-9287-8dedf779fc3d",
   "metadata": {},
   "outputs": [],
   "source": [
    "def predict(test, model, tokenizer):\n",
    "    y_pred = []\n",
    "    labels = [\"Hate\", \"Offensive\", \"Normal\"]\n",
    "    \n",
    "    for i in tqdm(range(len(test))):\n",
    "        prompt = test.iloc[i][\"text\"]\n",
    "        pipe = pipeline(task=\"text-generation\", \n",
    "                        model=model, \n",
    "                        tokenizer=tokenizer, \n",
    "                        max_new_tokens=2, \n",
    "                        temperature=0.1)\n",
    "        \n",
    "        result = pipe(prompt)\n",
    "        answer = result[0]['generated_text'].split(\"label:\")[-1].strip()\n",
    "        \n",
    "        # Determine the predicted category\n",
    "        for label in labels:\n",
    "            if label.lower() in answer.lower():\n",
    "                y_pred.append(label)\n",
    "                break\n",
    "        else:\n",
    "            y_pred.append(\"none\")\n",
    "    \n",
    "    return y_pred\n",
    "\n",
    "y_pred = predict(X_test, model, tokenizer)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2bc4f2ea-5cde-4368-8f92-7883995d8977",
   "metadata": {},
   "outputs": [],
   "source": [
    "def evaluate(y_true, y_pred):\n",
    "    labels = [\"Hate\", \"Offensive\", \"Normal\"]\n",
    "    mapping = {label: idx for idx, label in enumerate(labels)}\n",
    "    \n",
    "    def map_func(x):\n",
    "        return mapping.get(x, -1)  # Map to -1 if not found, but should not occur with correct data\n",
    "    \n",
    "    y_true_mapped = np.vectorize(map_func)(y_true)\n",
    "    y_pred_mapped = np.vectorize(map_func)(y_pred)\n",
    "    \n",
    "    # Calculate accuracy\n",
    "    accuracy = accuracy_score(y_true=y_true_mapped, y_pred=y_pred_mapped)\n",
    "    print(f'Accuracy: {accuracy:.3f}')\n",
    "    \n",
    "    # Generate accuracy report\n",
    "    unique_labels = set(y_true_mapped)  # Get unique labels\n",
    "    \n",
    "    for label in unique_labels:\n",
    "        label_indices = [i for i in range(len(y_true_mapped)) if y_true_mapped[i] == label]\n",
    "        label_y_true = [y_true_mapped[i] for i in label_indices]\n",
    "        label_y_pred = [y_pred_mapped[i] for i in label_indices]\n",
    "        label_accuracy = accuracy_score(label_y_true, label_y_pred)\n",
    "        print(f'Accuracy for label {labels[label]}: {label_accuracy:.3f}')\n",
    "        \n",
    "    # Generate classification report\n",
    "    class_report = classification_report(y_true=y_true_mapped, y_pred=y_pred_mapped, target_names=labels, labels=list(range(len(labels))))\n",
    "    print('\\nClassification Report:')\n",
    "    print(class_report)\n",
    "    \n",
    "    # Generate confusion matrix\n",
    "    conf_matrix = confusion_matrix(y_true=y_true_mapped, y_pred=y_pred_mapped, labels=list(range(len(labels))))\n",
    "    print('\\nConfusion Matrix:')\n",
    "    print(conf_matrix)\n",
    "\n",
    "evaluate(y_true, y_pred)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}