Upload 3 files
Browse files
Hatespeech_Offensive_Classification_llama3.2-3B-instruct.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Hatespeech_Offensive_Classification_testmodels.ipynb
ADDED
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "93f5db97-0d94-4464-9891-0ebfe519d534",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"#!pip install -U bitsandbytes\n",
|
11 |
+
"#!pip install -U transformers\n",
|
12 |
+
"#!pip install -U accelerate\n",
|
13 |
+
"#!pip install -U peft\n",
|
14 |
+
"#!pip install -U trl"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": null,
|
20 |
+
"id": "1fd5f7f5-c053-4ecd-a0d4-b7a12ee32136",
|
21 |
+
"metadata": {},
|
22 |
+
"outputs": [],
|
23 |
+
"source": [
|
24 |
+
"#!huggingface-cli whoami"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"cell_type": "code",
|
29 |
+
"execution_count": null,
|
30 |
+
"id": "5780dde2-c61e-464b-91aa-e68301124b6e",
|
31 |
+
"metadata": {},
|
32 |
+
"outputs": [],
|
33 |
+
"source": [
|
34 |
+
"import numpy as np\n",
|
35 |
+
"import pandas as pd\n",
|
36 |
+
"import os\n",
|
37 |
+
"from tqdm import tqdm\n",
|
38 |
+
"import bitsandbytes as bnb\n",
|
39 |
+
"import torch\n",
|
40 |
+
"import torch.nn as nn\n",
|
41 |
+
"import transformers\n",
|
42 |
+
"from datasets import Dataset\n",
|
43 |
+
"from peft import LoraConfig, PeftConfig\n",
|
44 |
+
"from trl import SFTTrainer\n",
|
45 |
+
"from trl import setup_chat_format\n",
|
46 |
+
"from transformers import (AutoModelForCausalLM, \n",
|
47 |
+
" AutoTokenizer, \n",
|
48 |
+
" BitsAndBytesConfig, \n",
|
49 |
+
" TrainingArguments, \n",
|
50 |
+
" pipeline, \n",
|
51 |
+
" logging)\n",
|
52 |
+
"from sklearn.metrics import (accuracy_score, \n",
|
53 |
+
" classification_report, \n",
|
54 |
+
" confusion_matrix)\n",
|
55 |
+
"from sklearn.model_selection import train_test_split"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "code",
|
60 |
+
"execution_count": null,
|
61 |
+
"id": "84b29425-b5ad-4852-b9e2-6887eece0de8",
|
62 |
+
"metadata": {},
|
63 |
+
"outputs": [],
|
64 |
+
"source": [
|
65 |
+
"from datasets import load_dataset\n",
|
66 |
+
"\n",
|
67 |
+
"df = pd.read_parquet(\"hf://datasets/tdavidson/hate_speech_offensive/data/train-00000-of-00001.parquet\")\n",
|
68 |
+
"df.head()"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"cell_type": "code",
|
73 |
+
"execution_count": null,
|
74 |
+
"id": "b7395daa-b933-4204-854c-472548343f31",
|
75 |
+
"metadata": {},
|
76 |
+
"outputs": [],
|
77 |
+
"source": [
|
78 |
+
"df = df.rename(columns={\"class\": \"label\",\"tweet\": \"text\"}).sample(frac=1, random_state=85).reset_index(drop=True).head(3000)\n",
|
79 |
+
"df.loc[:,'label'] = df.loc[:,'label'].replace(0,'Hate')\n",
|
80 |
+
"df.loc[:,'label'] = df.loc[:,'label'].replace(1,'Offensive')\n",
|
81 |
+
"df.loc[:,'label'] = df.loc[:,'label'].replace(2,'Normal')\n",
|
82 |
+
"# Split the DataFrame\n",
|
83 |
+
"train_size = 0.8\n",
|
84 |
+
"eval_size = 0.1\n",
|
85 |
+
"\n",
|
86 |
+
"# Calculate sizes\n",
|
87 |
+
"train_end = int(train_size * len(df))\n",
|
88 |
+
"eval_end = train_end + int(eval_size * len(df))\n",
|
89 |
+
"\n",
|
90 |
+
"# Split the data\n",
|
91 |
+
"X_train = df[:train_end]\n",
|
92 |
+
"X_eval = df[train_end:eval_end]\n",
|
93 |
+
"X_test = df[eval_end:]\n",
|
94 |
+
"# Define the prompt generation functions\n",
|
95 |
+
"def generate_prompt(data_point):\n",
|
96 |
+
" return f\"\"\"\n",
|
97 |
+
" Classify the text into Hatespeech, Offensive, Normal and return the answer as the corresponding label.\n",
|
98 |
+
"text: {data_point[\"text\"]}\n",
|
99 |
+
"label: {data_point[\"label\"]}\"\"\".strip()\n",
|
100 |
+
"\n",
|
101 |
+
"def generate_test_prompt(data_point):\n",
|
102 |
+
" return f\"\"\"\n",
|
103 |
+
" Classify the text into Hatespeech, Offensive, Normal and return the answer as the corresponding label.\n",
|
104 |
+
" text: {data_point[\"text\"]}\n",
|
105 |
+
" label: \"\"\".strip()\n",
|
106 |
+
"\n",
|
107 |
+
"# Generate prompts for training and evaluation data\n",
|
108 |
+
"X_train.loc[:,'text'] = X_train.apply(generate_prompt, axis=1)\n",
|
109 |
+
"X_eval.loc[:,'text'] = X_eval.apply(generate_prompt, axis=1)\n",
|
110 |
+
"\n",
|
111 |
+
"# Generate test prompts and extract true labels\n",
|
112 |
+
"y_true = X_test.loc[:,'label']\n",
|
113 |
+
"X_test = pd.DataFrame(X_test.apply(generate_test_prompt, axis=1), columns=[\"text\"])"
|
114 |
+
]
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"cell_type": "code",
|
118 |
+
"execution_count": null,
|
119 |
+
"id": "bc18edca-e02b-4a32-8cc1-7d83f00bdba5",
|
120 |
+
"metadata": {},
|
121 |
+
"outputs": [],
|
122 |
+
"source": [
|
123 |
+
"X_train.label.value_counts()"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"cell_type": "code",
|
128 |
+
"execution_count": null,
|
129 |
+
"id": "52d5ccf5-7669-447f-8a90-43cbb7e8e337",
|
130 |
+
"metadata": {},
|
131 |
+
"outputs": [],
|
132 |
+
"source": [
|
133 |
+
"train_data = Dataset.from_pandas(X_train[[\"text\"]])\n",
|
134 |
+
"eval_data = Dataset.from_pandas(X_eval[[\"text\"]])"
|
135 |
+
]
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"cell_type": "code",
|
139 |
+
"execution_count": null,
|
140 |
+
"id": "f7732c58-e8c6-436b-810d-40abd4f593ab",
|
141 |
+
"metadata": {},
|
142 |
+
"outputs": [],
|
143 |
+
"source": [
|
144 |
+
"train_data['text'][2000]"
|
145 |
+
]
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"cell_type": "code",
|
149 |
+
"execution_count": null,
|
150 |
+
"id": "0f15e59f-9e50-48f1-b6f5-d6dc46db623f",
|
151 |
+
"metadata": {},
|
152 |
+
"outputs": [],
|
153 |
+
"source": [
|
154 |
+
"#CHANGE MODEL HERE#\n",
|
155 |
+
"base_model_name = \"meta-llama/Llama-3.2-3B-Instruct\"\n",
|
156 |
+
"\n",
|
157 |
+
"bnb_config = BitsAndBytesConfig(\n",
|
158 |
+
" load_in_4bit=True,\n",
|
159 |
+
" bnb_4bit_use_double_quant=False,\n",
|
160 |
+
" bnb_4bit_quant_type=\"nf4\",\n",
|
161 |
+
" bnb_4bit_compute_dtype=\"float16\",\n",
|
162 |
+
")\n",
|
163 |
+
"\n",
|
164 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
165 |
+
" base_model_name,\n",
|
166 |
+
" device_map=\"auto\",\n",
|
167 |
+
" torch_dtype=\"float16\",\n",
|
168 |
+
" quantization_config=bnb_config, \n",
|
169 |
+
")\n",
|
170 |
+
"\n",
|
171 |
+
"model.config.use_cache = False\n",
|
172 |
+
"model.config.pretraining_tp = 1\n",
|
173 |
+
"\n",
|
174 |
+
"tokenizer = AutoTokenizer.from_pretrained(base_model_name)\n",
|
175 |
+
"\n",
|
176 |
+
"tokenizer.pad_token_id = tokenizer.eos_token_id"
|
177 |
+
]
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"cell_type": "code",
|
181 |
+
"execution_count": null,
|
182 |
+
"id": "97ccf698-09de-4423-9287-8dedf779fc3d",
|
183 |
+
"metadata": {},
|
184 |
+
"outputs": [],
|
185 |
+
"source": [
|
186 |
+
"def predict(test, model, tokenizer):\n",
|
187 |
+
" y_pred = []\n",
|
188 |
+
" labels = [\"Hate\", \"Offensive\", \"Normal\"]\n",
|
189 |
+
" \n",
|
190 |
+
" for i in tqdm(range(len(test))):\n",
|
191 |
+
" prompt = test.iloc[i][\"text\"]\n",
|
192 |
+
" pipe = pipeline(task=\"text-generation\", \n",
|
193 |
+
" model=model, \n",
|
194 |
+
" tokenizer=tokenizer, \n",
|
195 |
+
" max_new_tokens=2, \n",
|
196 |
+
" temperature=0.1)\n",
|
197 |
+
" \n",
|
198 |
+
" result = pipe(prompt)\n",
|
199 |
+
" answer = result[0]['generated_text'].split(\"label:\")[-1].strip()\n",
|
200 |
+
" \n",
|
201 |
+
" # Determine the predicted category\n",
|
202 |
+
" for label in labels:\n",
|
203 |
+
" if label.lower() in answer.lower():\n",
|
204 |
+
" y_pred.append(label)\n",
|
205 |
+
" break\n",
|
206 |
+
" else:\n",
|
207 |
+
" y_pred.append(\"none\")\n",
|
208 |
+
" \n",
|
209 |
+
" return y_pred\n",
|
210 |
+
"\n",
|
211 |
+
"y_pred = predict(X_test, model, tokenizer)"
|
212 |
+
]
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"cell_type": "code",
|
216 |
+
"execution_count": null,
|
217 |
+
"id": "2bc4f2ea-5cde-4368-8f92-7883995d8977",
|
218 |
+
"metadata": {},
|
219 |
+
"outputs": [],
|
220 |
+
"source": [
|
221 |
+
"def evaluate(y_true, y_pred):\n",
|
222 |
+
" labels = [\"Hate\", \"Offensive\", \"Normal\"]\n",
|
223 |
+
" mapping = {label: idx for idx, label in enumerate(labels)}\n",
|
224 |
+
" \n",
|
225 |
+
" def map_func(x):\n",
|
226 |
+
" return mapping.get(x, -1) # Map to -1 if not found, but should not occur with correct data\n",
|
227 |
+
" \n",
|
228 |
+
" y_true_mapped = np.vectorize(map_func)(y_true)\n",
|
229 |
+
" y_pred_mapped = np.vectorize(map_func)(y_pred)\n",
|
230 |
+
" \n",
|
231 |
+
" # Calculate accuracy\n",
|
232 |
+
" accuracy = accuracy_score(y_true=y_true_mapped, y_pred=y_pred_mapped)\n",
|
233 |
+
" print(f'Accuracy: {accuracy:.3f}')\n",
|
234 |
+
" \n",
|
235 |
+
" # Generate accuracy report\n",
|
236 |
+
" unique_labels = set(y_true_mapped) # Get unique labels\n",
|
237 |
+
" \n",
|
238 |
+
" for label in unique_labels:\n",
|
239 |
+
" label_indices = [i for i in range(len(y_true_mapped)) if y_true_mapped[i] == label]\n",
|
240 |
+
" label_y_true = [y_true_mapped[i] for i in label_indices]\n",
|
241 |
+
" label_y_pred = [y_pred_mapped[i] for i in label_indices]\n",
|
242 |
+
" label_accuracy = accuracy_score(label_y_true, label_y_pred)\n",
|
243 |
+
" print(f'Accuracy for label {labels[label]}: {label_accuracy:.3f}')\n",
|
244 |
+
" \n",
|
245 |
+
" # Generate classification report\n",
|
246 |
+
" class_report = classification_report(y_true=y_true_mapped, y_pred=y_pred_mapped, target_names=labels, labels=list(range(len(labels))))\n",
|
247 |
+
" print('\\nClassification Report:')\n",
|
248 |
+
" print(class_report)\n",
|
249 |
+
" \n",
|
250 |
+
" # Generate confusion matrix\n",
|
251 |
+
" conf_matrix = confusion_matrix(y_true=y_true_mapped, y_pred=y_pred_mapped, labels=list(range(len(labels))))\n",
|
252 |
+
" print('\\nConfusion Matrix:')\n",
|
253 |
+
" print(conf_matrix)\n",
|
254 |
+
"\n",
|
255 |
+
"evaluate(y_true, y_pred)"
|
256 |
+
]
|
257 |
+
}
|
258 |
+
],
|
259 |
+
"metadata": {
|
260 |
+
"kernelspec": {
|
261 |
+
"display_name": "Python 3 (ipykernel)",
|
262 |
+
"language": "python",
|
263 |
+
"name": "python3"
|
264 |
+
},
|
265 |
+
"language_info": {
|
266 |
+
"codemirror_mode": {
|
267 |
+
"name": "ipython",
|
268 |
+
"version": 3
|
269 |
+
},
|
270 |
+
"file_extension": ".py",
|
271 |
+
"mimetype": "text/x-python",
|
272 |
+
"name": "python",
|
273 |
+
"nbconvert_exporter": "python",
|
274 |
+
"pygments_lexer": "ipython3",
|
275 |
+
"version": "3.12.5"
|
276 |
+
}
|
277 |
+
},
|
278 |
+
"nbformat": 4,
|
279 |
+
"nbformat_minor": 5
|
280 |
+
}
|
run.ipynb
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 31,
|
6 |
+
"id": "b368a208-7b0f-4928-aad6-94030a47d573",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"data": {
|
11 |
+
"application/vnd.jupyter.widget-view+json": {
|
12 |
+
"model_id": "6d72bc7458d64ec7af180321e7d9d7aa",
|
13 |
+
"version_major": 2,
|
14 |
+
"version_minor": 0
|
15 |
+
},
|
16 |
+
"text/plain": [
|
17 |
+
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
"metadata": {},
|
21 |
+
"output_type": "display_data"
|
22 |
+
}
|
23 |
+
],
|
24 |
+
"source": [
|
25 |
+
"###load models\n",
|
26 |
+
"base_model = \"meta-llama/Llama-3.2-3B-Instruct\"\n",
|
27 |
+
"fine_tuned_model = \"/home/marco/llama-3.2-instruct-offensive-classification-1.0.0\"\n",
|
28 |
+
"\n",
|
29 |
+
"from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline\n",
|
30 |
+
"from peft import PeftModel\n",
|
31 |
+
"import torch\n",
|
32 |
+
"\n",
|
33 |
+
"\n",
|
34 |
+
"# Reload tokenizer and model\n",
|
35 |
+
"tokenizer = AutoTokenizer.from_pretrained(fine_tuned_model)\n",
|
36 |
+
"\n",
|
37 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
38 |
+
" fine_tuned_model,\n",
|
39 |
+
" return_dict=True,\n",
|
40 |
+
" low_cpu_mem_usage=True,\n",
|
41 |
+
" torch_dtype=torch.float16,\n",
|
42 |
+
" device_map=\"auto\",\n",
|
43 |
+
" trust_remote_code=True,\n",
|
44 |
+
" offload_buffers=True\n",
|
45 |
+
")"
|
46 |
+
]
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "code",
|
50 |
+
"execution_count": 32,
|
51 |
+
"id": "54e39123-1ed6-4990-8295-6df1e0563fc5",
|
52 |
+
"metadata": {},
|
53 |
+
"outputs": [],
|
54 |
+
"source": [
|
55 |
+
"text = \"You are a pig!\""
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "code",
|
60 |
+
"execution_count": 33,
|
61 |
+
"id": "1b68121f-3215-46f6-901b-406be4e05a06",
|
62 |
+
"metadata": {},
|
63 |
+
"outputs": [
|
64 |
+
{
|
65 |
+
"name": "stderr",
|
66 |
+
"output_type": "stream",
|
67 |
+
"text": [
|
68 |
+
"Device set to use cpu\n"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"name": "stdout",
|
73 |
+
"output_type": "stream",
|
74 |
+
"text": [
|
75 |
+
"Offensive\n"
|
76 |
+
]
|
77 |
+
}
|
78 |
+
],
|
79 |
+
"source": [
|
80 |
+
"###Start Prompt\n",
|
81 |
+
"prompt = f\"\"\"Classify the text into Hatespeech, Offensive, Normal and return the answer as the corresponding label.\n",
|
82 |
+
"text: {text}\n",
|
83 |
+
"label: \"\"\".strip()\n",
|
84 |
+
"\n",
|
85 |
+
"pipe = pipeline(\n",
|
86 |
+
" \"text-generation\",\n",
|
87 |
+
" model=model,\n",
|
88 |
+
" tokenizer=tokenizer,\n",
|
89 |
+
" torch_dtype=torch.float16,\n",
|
90 |
+
" device_map=\"auto\"\n",
|
91 |
+
")\n",
|
92 |
+
"\n",
|
93 |
+
"outputs = pipe(prompt, max_new_tokens=2, do_sample=True, temperature=0.1, pad_token_id=tokenizer.eos_token_id)\n",
|
94 |
+
"print(outputs[0][\"generated_text\"].split(\"label: \")[-1].strip())"
|
95 |
+
]
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"cell_type": "code",
|
99 |
+
"execution_count": null,
|
100 |
+
"id": "d709317d-b9cf-4590-9caf-ac74842f6be2",
|
101 |
+
"metadata": {},
|
102 |
+
"outputs": [],
|
103 |
+
"source": []
|
104 |
+
}
|
105 |
+
],
|
106 |
+
"metadata": {
|
107 |
+
"kernelspec": {
|
108 |
+
"display_name": "Python 3 (ipykernel)",
|
109 |
+
"language": "python",
|
110 |
+
"name": "python3"
|
111 |
+
},
|
112 |
+
"language_info": {
|
113 |
+
"codemirror_mode": {
|
114 |
+
"name": "ipython",
|
115 |
+
"version": 3
|
116 |
+
},
|
117 |
+
"file_extension": ".py",
|
118 |
+
"mimetype": "text/x-python",
|
119 |
+
"name": "python",
|
120 |
+
"nbconvert_exporter": "python",
|
121 |
+
"pygments_lexer": "ipython3",
|
122 |
+
"version": "3.12.5"
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"nbformat": 4,
|
126 |
+
"nbformat_minor": 5
|
127 |
+
}
|