manotham's picture
End of training
20768b4 verified
metadata
library_name: transformers
base_model: seyonec/PubChem10M_SMILES_BPE_450k
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: manotham-finetuneClassfication-AlzheimerDrug
    results: []

manotham-finetuneClassfication-AlzheimerDrug

This model is a fine-tuned version of seyonec/PubChem10M_SMILES_BPE_450k on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2675
  • Accuracy: 0.9383
  • Precision: 0.9398
  • Recall: 0.9383
  • F1: 0.9382

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 75 0.2011 0.9408 0.9418 0.9408 0.9408
No log 2.0 150 0.2087 0.9475 0.9475 0.9475 0.9475
No log 3.0 225 0.2427 0.945 0.9457 0.945 0.9450
No log 4.0 300 0.2497 0.9417 0.9424 0.9417 0.9416
No log 5.0 375 0.2675 0.9383 0.9398 0.9383 0.9382

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1