File size: 8,257 Bytes
cd7e517 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import os
import json
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, List, Tuple
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
def norm(x):
return F.rms_norm(x, (x.size(-1),))
class CastedLinear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features, bias=False)
@torch.inference_mode()
def forward(self, x):
return F.linear(x, self.weight.type_as(x))
class Rotary(nn.Module):
def __init__(self, dim, max_seq_len=65536):
super().__init__()
angular_freq = (1 / 1024) ** torch.linspace(0, 1, steps=dim//4, dtype=torch.float32)
angular_freq = torch.cat([angular_freq, angular_freq.new_zeros(dim//4)])
t = torch.arange(max_seq_len, dtype=torch.float32)
theta = torch.einsum('i,j -> ij', t, angular_freq)
self.register_buffer('cos', theta.cos(), persistent=False)
self.register_buffer('sin', theta.sin(), persistent=False)
@torch.inference_mode()
def forward(self, x):
cos, sin = self.cos[None, :x.size(-3), None, :], self.sin[None, :x.size(-3), None, :]
x1, x2 = x.float().chunk(2, dim=-1)
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat((y1, y2), 3).type_as(x)
class CausalSelfAttention(nn.Module):
def __init__(self, dim, num_heads):
super().__init__()
assert dim % num_heads == 0
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.c_q = CastedLinear(dim, dim)
self.c_k = CastedLinear(dim, dim)
self.c_v = CastedLinear(dim, dim)
self.lambdas = nn.Parameter(torch.tensor([0.5, 0.5]))
self.rotary = Rotary(self.head_dim)
self.c_proj = CastedLinear(dim, dim)
self.register_buffer('kv_cache', None, persistent=False)
@torch.inference_mode()
def forward(self, x, ve):
B, T = x.size(0), x.size(1)
q = self.c_q(x).view(B, T, self.num_heads, self.head_dim)
k = self.c_k(x).view(B, T, self.num_heads, self.head_dim)
v = self.c_v(x).view(B, T, self.num_heads, self.head_dim)
if ve is not None:
v = self.lambdas[0] * v + self.lambdas[1] * ve.view_as(v)
else:
v = self.lambdas[0] * v
q, k = norm(q), norm(k)
q, k = self.rotary(q), self.rotary(k)
if self.kv_cache is not None:
k = torch.cat([self.kv_cache[0], k], dim=1)
v = torch.cat([self.kv_cache[1], v], dim=1)
self.kv_cache = torch.stack([k, v])
if hasattr(F, 'scaled_dot_product_attention'):
y = F.scaled_dot_product_attention(
q.transpose(1, 2),
k.transpose(1, 2),
v.transpose(1, 2),
is_causal=True
)
else:
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(self.head_dim))
att = att.masked_fill(
torch.triu(torch.ones(T, T, device=x.device), diagonal=1).bool(),
float('-inf')
)
att = F.softmax(att, dim=-1)
y = att @ v
y = y.transpose(1, 2).contiguous().view(B, T, -1)
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, dim):
super().__init__()
self.c_fc = CastedLinear(dim, 4 * dim)
self.c_proj = CastedLinear(4 * dim, dim)
self.c_proj.weight.data.zero_()
@torch.inference_mode()
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square()
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, model_dim, num_heads, use_attn=True):
super().__init__()
self.attn = CausalSelfAttention(model_dim, num_heads) if use_attn else None
self.mlp = MLP(model_dim)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
@torch.inference_mode()
def forward(self, x, ve, x0):
x = self.lambdas[0] * x + self.lambdas[1] * x0
if self.attn is not None:
x = x + self.attn(norm(x), ve)
x = x + self.mlp(norm(x))
return x
class ValueEmbedding(nn.Module):
def __init__(self, vocab_size, model_dim):
super().__init__()
self.embed = nn.ModuleList([nn.Embedding(vocab_size, model_dim) for _ in range(3)])
@torch.inference_mode()
def forward(self, inputs):
ve = [emb(inputs).bfloat16() for emb in self.embed]
ve = [ve[0], ve[1], ve[2], None, None, None, None, None, None, ve[0], ve[1], ve[2]]
return ve
class ChronoGPT(nn.Module, PyTorchModelHubMixin):
def __init__(self, vocab_size, num_layers, num_heads, model_dim, **kwargs):
super().__init__()
# Removed undefined "device" reference
self.num_heads = num_heads
self.vocab_size = vocab_size
self.embed = nn.Embedding(vocab_size, model_dim)
self.blocks = nn.ModuleList([Block(model_dim, num_heads, use_attn=(i != 7))
for i in range(num_layers)])
self.value_embeds = ValueEmbedding(vocab_size, model_dim)
self.lm_head = CastedLinear(model_dim, vocab_size)
self.lm_head.weight.data.zero_()
self.num_encoder_layers = num_layers // 2
self.num_decoder_layers = num_layers - self.num_encoder_layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
@torch.inference_mode()
def forward(self, inputs, past_key_values=None):
B = inputs.size(0)
if inputs.dim() == 1:
inputs = inputs.unsqueeze(0)
layer_outputs = []
x0 = norm(self.embed(inputs).bfloat16())
x = x0
layer_outputs.append(norm(x))
ve = [self.value_embeds(inputs[i].view(-1)) for i in range(B)]
ve = [torch.stack([ve[b][i] for b in range(B)]) if ve[0][i] is not None else None
for i in range(len(ve[0]))]
ve_enc, ve_dec = ve[:self.num_encoder_layers], ve[self.num_encoder_layers:]
if past_key_values is not None:
for i, block in enumerate(self.blocks):
if block.attn is not None:
block.attn.kv_cache = past_key_values[i]
present = []
skip_connections = []
for i in range(self.num_encoder_layers):
block = self.blocks[i]
x = block(x, ve_enc[i], x0)
if block.attn is not None:
present.append(block.attn.kv_cache)
block.attn.kv_cache = None
skip_connections.append(x)
layer_outputs.append(norm(x))
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
block = self.blocks[self.num_encoder_layers + i]
x = block(x, ve_dec[i], x0)
layer_outputs.append(norm(x))
if block.attn is not None:
present.append(block.attn.kv_cache)
block.attn.kv_cache = None
x = norm(x)
logits = self.lm_head(x)
logits = 15 * torch.tanh(logits / 15)
return logits.float(), layer_outputs
def save_pretrained(self, save_directory, **kwargs):
os.makedirs(save_directory, exist_ok=True)
torch.save(self.state_dict(), os.path.join(save_directory, "pytorch_model.bin"))
config = {
"model_type": "ChronoGPT",
"vocab_size": self.embed.num_embeddings,
"num_layers": len(self.blocks),
"num_heads": self.num_heads,
"model_dim": self.embed.embedding_dim
}
torch.save(config, os.path.join(save_directory, "config.pt"))
with open(os.path.join(save_directory, "config.json"), "w") as f:
json.dump(config, f)
@classmethod
def from_pretrained(cls, repo_id, cache_dir=None, **kwargs):
config_path = hf_hub_download(repo_id=repo_id, filename="config.pt", cache_dir=cache_dir)
bin_path = hf_hub_download(repo_id=repo_id, filename="pytorch_model.bin", cache_dir=cache_dir)
config = torch.load(config_path)
model = cls(**config)
model.load_state_dict(torch.load(bin_path))
return model |