LinyingLyu commited on
Commit
cd7e517
·
verified ·
1 Parent(s): dd5d178

Upload modeling_chronogpt.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. modeling_chronogpt.py +196 -0
modeling_chronogpt.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import math
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ from typing import Optional, List, Tuple
8
+ from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
9
+
10
+ def norm(x):
11
+ return F.rms_norm(x, (x.size(-1),))
12
+
13
+ class CastedLinear(nn.Linear):
14
+ def __init__(self, in_features, out_features):
15
+ super().__init__(in_features, out_features, bias=False)
16
+ @torch.inference_mode()
17
+ def forward(self, x):
18
+ return F.linear(x, self.weight.type_as(x))
19
+
20
+ class Rotary(nn.Module):
21
+ def __init__(self, dim, max_seq_len=65536):
22
+ super().__init__()
23
+ angular_freq = (1 / 1024) ** torch.linspace(0, 1, steps=dim//4, dtype=torch.float32)
24
+ angular_freq = torch.cat([angular_freq, angular_freq.new_zeros(dim//4)])
25
+ t = torch.arange(max_seq_len, dtype=torch.float32)
26
+ theta = torch.einsum('i,j -> ij', t, angular_freq)
27
+ self.register_buffer('cos', theta.cos(), persistent=False)
28
+ self.register_buffer('sin', theta.sin(), persistent=False)
29
+ @torch.inference_mode()
30
+ def forward(self, x):
31
+ cos, sin = self.cos[None, :x.size(-3), None, :], self.sin[None, :x.size(-3), None, :]
32
+ x1, x2 = x.float().chunk(2, dim=-1)
33
+ y1 = x1 * cos + x2 * sin
34
+ y2 = x1 * (-sin) + x2 * cos
35
+ return torch.cat((y1, y2), 3).type_as(x)
36
+
37
+ class CausalSelfAttention(nn.Module):
38
+ def __init__(self, dim, num_heads):
39
+ super().__init__()
40
+ assert dim % num_heads == 0
41
+ self.num_heads = num_heads
42
+ self.head_dim = dim // num_heads
43
+ self.c_q = CastedLinear(dim, dim)
44
+ self.c_k = CastedLinear(dim, dim)
45
+ self.c_v = CastedLinear(dim, dim)
46
+ self.lambdas = nn.Parameter(torch.tensor([0.5, 0.5]))
47
+ self.rotary = Rotary(self.head_dim)
48
+ self.c_proj = CastedLinear(dim, dim)
49
+ self.register_buffer('kv_cache', None, persistent=False)
50
+ @torch.inference_mode()
51
+ def forward(self, x, ve):
52
+ B, T = x.size(0), x.size(1)
53
+ q = self.c_q(x).view(B, T, self.num_heads, self.head_dim)
54
+ k = self.c_k(x).view(B, T, self.num_heads, self.head_dim)
55
+ v = self.c_v(x).view(B, T, self.num_heads, self.head_dim)
56
+ if ve is not None:
57
+ v = self.lambdas[0] * v + self.lambdas[1] * ve.view_as(v)
58
+ else:
59
+ v = self.lambdas[0] * v
60
+ q, k = norm(q), norm(k)
61
+ q, k = self.rotary(q), self.rotary(k)
62
+ if self.kv_cache is not None:
63
+ k = torch.cat([self.kv_cache[0], k], dim=1)
64
+ v = torch.cat([self.kv_cache[1], v], dim=1)
65
+ self.kv_cache = torch.stack([k, v])
66
+ if hasattr(F, 'scaled_dot_product_attention'):
67
+ y = F.scaled_dot_product_attention(
68
+ q.transpose(1, 2),
69
+ k.transpose(1, 2),
70
+ v.transpose(1, 2),
71
+ is_causal=True
72
+ )
73
+ else:
74
+ att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(self.head_dim))
75
+ att = att.masked_fill(
76
+ torch.triu(torch.ones(T, T, device=x.device), diagonal=1).bool(),
77
+ float('-inf')
78
+ )
79
+ att = F.softmax(att, dim=-1)
80
+ y = att @ v
81
+ y = y.transpose(1, 2).contiguous().view(B, T, -1)
82
+ y = self.c_proj(y)
83
+ return y
84
+
85
+ class MLP(nn.Module):
86
+ def __init__(self, dim):
87
+ super().__init__()
88
+ self.c_fc = CastedLinear(dim, 4 * dim)
89
+ self.c_proj = CastedLinear(4 * dim, dim)
90
+ self.c_proj.weight.data.zero_()
91
+ @torch.inference_mode()
92
+ def forward(self, x):
93
+ x = self.c_fc(x)
94
+ x = F.relu(x).square()
95
+ x = self.c_proj(x)
96
+ return x
97
+
98
+ class Block(nn.Module):
99
+ def __init__(self, model_dim, num_heads, use_attn=True):
100
+ super().__init__()
101
+ self.attn = CausalSelfAttention(model_dim, num_heads) if use_attn else None
102
+ self.mlp = MLP(model_dim)
103
+ self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
104
+ @torch.inference_mode()
105
+ def forward(self, x, ve, x0):
106
+ x = self.lambdas[0] * x + self.lambdas[1] * x0
107
+ if self.attn is not None:
108
+ x = x + self.attn(norm(x), ve)
109
+ x = x + self.mlp(norm(x))
110
+ return x
111
+
112
+ class ValueEmbedding(nn.Module):
113
+ def __init__(self, vocab_size, model_dim):
114
+ super().__init__()
115
+ self.embed = nn.ModuleList([nn.Embedding(vocab_size, model_dim) for _ in range(3)])
116
+ @torch.inference_mode()
117
+ def forward(self, inputs):
118
+ ve = [emb(inputs).bfloat16() for emb in self.embed]
119
+ ve = [ve[0], ve[1], ve[2], None, None, None, None, None, None, ve[0], ve[1], ve[2]]
120
+ return ve
121
+
122
+ class ChronoGPT(nn.Module, PyTorchModelHubMixin):
123
+ def __init__(self, vocab_size, num_layers, num_heads, model_dim, **kwargs):
124
+ super().__init__()
125
+ # Removed undefined "device" reference
126
+ self.num_heads = num_heads
127
+ self.vocab_size = vocab_size
128
+ self.embed = nn.Embedding(vocab_size, model_dim)
129
+ self.blocks = nn.ModuleList([Block(model_dim, num_heads, use_attn=(i != 7))
130
+ for i in range(num_layers)])
131
+ self.value_embeds = ValueEmbedding(vocab_size, model_dim)
132
+ self.lm_head = CastedLinear(model_dim, vocab_size)
133
+ self.lm_head.weight.data.zero_()
134
+ self.num_encoder_layers = num_layers // 2
135
+ self.num_decoder_layers = num_layers - self.num_encoder_layers
136
+ self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
137
+ @torch.inference_mode()
138
+ def forward(self, inputs, past_key_values=None):
139
+ B = inputs.size(0)
140
+ if inputs.dim() == 1:
141
+ inputs = inputs.unsqueeze(0)
142
+ layer_outputs = []
143
+ x0 = norm(self.embed(inputs).bfloat16())
144
+ x = x0
145
+ layer_outputs.append(norm(x))
146
+ ve = [self.value_embeds(inputs[i].view(-1)) for i in range(B)]
147
+ ve = [torch.stack([ve[b][i] for b in range(B)]) if ve[0][i] is not None else None
148
+ for i in range(len(ve[0]))]
149
+ ve_enc, ve_dec = ve[:self.num_encoder_layers], ve[self.num_encoder_layers:]
150
+ if past_key_values is not None:
151
+ for i, block in enumerate(self.blocks):
152
+ if block.attn is not None:
153
+ block.attn.kv_cache = past_key_values[i]
154
+ present = []
155
+ skip_connections = []
156
+ for i in range(self.num_encoder_layers):
157
+ block = self.blocks[i]
158
+ x = block(x, ve_enc[i], x0)
159
+ if block.attn is not None:
160
+ present.append(block.attn.kv_cache)
161
+ block.attn.kv_cache = None
162
+ skip_connections.append(x)
163
+ layer_outputs.append(norm(x))
164
+ for i in range(self.num_decoder_layers):
165
+ x = x + self.skip_weights[i] * skip_connections.pop()
166
+ block = self.blocks[self.num_encoder_layers + i]
167
+ x = block(x, ve_dec[i], x0)
168
+ layer_outputs.append(norm(x))
169
+ if block.attn is not None:
170
+ present.append(block.attn.kv_cache)
171
+ block.attn.kv_cache = None
172
+ x = norm(x)
173
+ logits = self.lm_head(x)
174
+ logits = 15 * torch.tanh(logits / 15)
175
+ return logits.float(), layer_outputs
176
+ def save_pretrained(self, save_directory, **kwargs):
177
+ os.makedirs(save_directory, exist_ok=True)
178
+ torch.save(self.state_dict(), os.path.join(save_directory, "pytorch_model.bin"))
179
+ config = {
180
+ "model_type": "ChronoGPT",
181
+ "vocab_size": self.embed.num_embeddings,
182
+ "num_layers": len(self.blocks),
183
+ "num_heads": self.num_heads,
184
+ "model_dim": self.embed.embedding_dim
185
+ }
186
+ torch.save(config, os.path.join(save_directory, "config.pt"))
187
+ with open(os.path.join(save_directory, "config.json"), "w") as f:
188
+ json.dump(config, f)
189
+ @classmethod
190
+ def from_pretrained(cls, repo_id, cache_dir=None, **kwargs):
191
+ config_path = hf_hub_download(repo_id=repo_id, filename="config.pt", cache_dir=cache_dir)
192
+ bin_path = hf_hub_download(repo_id=repo_id, filename="pytorch_model.bin", cache_dir=cache_dir)
193
+ config = torch.load(config_path)
194
+ model = cls(**config)
195
+ model.load_state_dict(torch.load(bin_path))
196
+ return model