Upload folder using huggingface_hub
Browse files- .ipynb_checkpoints/README-checkpoint.md +5 -5
- README.md +5 -5
.ipynb_checkpoints/README-checkpoint.md
CHANGED
@@ -32,8 +32,8 @@ All models in the series achieve **GLUE benchmark scores that surpass standard B
|
|
32 |
```python
|
33 |
from transformers import AutoTokenizer, AutoModel
|
34 |
|
35 |
-
tokenizer = AutoTokenizer.from_pretrained("manelalab/
|
36 |
-
model = AutoModel.from_pretrained("manelalab/
|
37 |
|
38 |
text = "You've gotta be very careful not to mess with the space-time continuum. -- Dr. Brown, Back to the Future"
|
39 |
|
@@ -45,7 +45,7 @@ outputs = model(**inputs)
|
|
45 |
|
46 |
### Training Data
|
47 |
|
48 |
-
- **Pretraining corpus:** Our initial model
|
49 |
- **Incremental updates:** Yearly updates from 2000 to 2024 with an additional 65 billion tokens of timestamped text.
|
50 |
|
51 |
### Training Procedure
|
@@ -63,8 +63,8 @@ outputs = model(**inputs)
|
|
63 |
|
64 |
### Results
|
65 |
|
66 |
-
- **GLUE Score:**
|
67 |
-
- **Stock return predictions:** During the sample from 2008-01 to 2023-07,
|
68 |
|
69 |
|
70 |
## Citation
|
|
|
32 |
```python
|
33 |
from transformers import AutoTokenizer, AutoModel
|
34 |
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained("manelalab/chrono-bert-v1-19991231")
|
36 |
+
model = AutoModel.from_pretrained("manelalab/chrono-bert-v1-19991231")
|
37 |
|
38 |
text = "You've gotta be very careful not to mess with the space-time continuum. -- Dr. Brown, Back to the Future"
|
39 |
|
|
|
45 |
|
46 |
### Training Data
|
47 |
|
48 |
+
- **Pretraining corpus:** Our initial model chrono-bert-v1-19991231 is pretrained on 460 billion tokens of pre-2000, diverse, high-quality, and open-source text data to ensure no leakage of data afterwards.
|
49 |
- **Incremental updates:** Yearly updates from 2000 to 2024 with an additional 65 billion tokens of timestamped text.
|
50 |
|
51 |
### Training Procedure
|
|
|
63 |
|
64 |
### Results
|
65 |
|
66 |
+
- **GLUE Score:** chrono-bert-v1-19991231 and chrono-bert-v1-20241231 achieved GLUE score of 84.71 and 85.54 respectively, outperforming BERT (84.52).
|
67 |
+
- **Stock return predictions:** During the sample from 2008-01 to 2023-07, chrono-bert-v1-realtime achieves a long-short portfolio **Sharpe ratio of 4.80**, outperforming BERT, FinBERT, and StoriesLM-v1-1963, and comparable to **Llama 3.1 8B (4.90)**.
|
68 |
|
69 |
|
70 |
## Citation
|
README.md
CHANGED
@@ -32,8 +32,8 @@ All models in the series achieve **GLUE benchmark scores that surpass standard B
|
|
32 |
```python
|
33 |
from transformers import AutoTokenizer, AutoModel
|
34 |
|
35 |
-
tokenizer = AutoTokenizer.from_pretrained("manelalab/
|
36 |
-
model = AutoModel.from_pretrained("manelalab/
|
37 |
|
38 |
text = "You've gotta be very careful not to mess with the space-time continuum. -- Dr. Brown, Back to the Future"
|
39 |
|
@@ -45,7 +45,7 @@ outputs = model(**inputs)
|
|
45 |
|
46 |
### Training Data
|
47 |
|
48 |
-
- **Pretraining corpus:** Our initial model
|
49 |
- **Incremental updates:** Yearly updates from 2000 to 2024 with an additional 65 billion tokens of timestamped text.
|
50 |
|
51 |
### Training Procedure
|
@@ -63,8 +63,8 @@ outputs = model(**inputs)
|
|
63 |
|
64 |
### Results
|
65 |
|
66 |
-
- **GLUE Score:**
|
67 |
-
- **Stock return predictions:** During the sample from 2008-01 to 2023-07,
|
68 |
|
69 |
|
70 |
## Citation
|
|
|
32 |
```python
|
33 |
from transformers import AutoTokenizer, AutoModel
|
34 |
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained("manelalab/chrono-bert-v1-19991231")
|
36 |
+
model = AutoModel.from_pretrained("manelalab/chrono-bert-v1-19991231")
|
37 |
|
38 |
text = "You've gotta be very careful not to mess with the space-time continuum. -- Dr. Brown, Back to the Future"
|
39 |
|
|
|
45 |
|
46 |
### Training Data
|
47 |
|
48 |
+
- **Pretraining corpus:** Our initial model chrono-bert-v1-19991231 is pretrained on 460 billion tokens of pre-2000, diverse, high-quality, and open-source text data to ensure no leakage of data afterwards.
|
49 |
- **Incremental updates:** Yearly updates from 2000 to 2024 with an additional 65 billion tokens of timestamped text.
|
50 |
|
51 |
### Training Procedure
|
|
|
63 |
|
64 |
### Results
|
65 |
|
66 |
+
- **GLUE Score:** chrono-bert-v1-19991231 and chrono-bert-v1-20241231 achieved GLUE score of 84.71 and 85.54 respectively, outperforming BERT (84.52).
|
67 |
+
- **Stock return predictions:** During the sample from 2008-01 to 2023-07, chrono-bert-v1-realtime achieves a long-short portfolio **Sharpe ratio of 4.80**, outperforming BERT, FinBERT, and StoriesLM-v1-1963, and comparable to **Llama 3.1 8B (4.90)**.
|
68 |
|
69 |
|
70 |
## Citation
|